Recent developments in self-powered smart chemical sensors for wearable electronics

Abstract

The next generation of electronics technology is purely going to be based on wearable sensing systems. Wearable electronic sensors that can operate in a continuous and sustainable manner without the need of an external power sources, are essential for portable and mobile electronic applications. In this review article, the recent progress and advantages of wearable self-powered smart chemical sensors systems for wearable electronics are presented. An overview of various modes of energy conversion and storage technologies for self-powered devices is provided. Self-powered chemical sensors (SPCS) systems with integrated energy units are then discussed, separated as solar cell-based SPCS, triboelectric nano-generators based SPCS, piezoelectric nano-generators based SPCS, energy storage device based SPCS, and thermal energy-based SPCS. Finally, the outlook on future prospects of wearable chemical sensors in self-powered sensing systems is addressed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Dong, K.; Wu, Z. Y.; Deng, J.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, e1804944.

    Article  CAS  Google Scholar 

  2. [2]

    Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

    Article  CAS  Google Scholar 

  3. [3]

    Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

    Article  CAS  Google Scholar 

  4. [4]

    Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.

    Article  CAS  Google Scholar 

  5. [5]

    Ai, Y. F.; Lou, Z.; Chen, S.; Chen, D.; Wang, Z. M.; Jiang, K.; Shen, G. Z. All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 2017, 35, 121–127.

    CAS  Article  Google Scholar 

  6. [6]

    Merelli, I.; Morganti, L.; Corni, E.; Pellegrino, C.; Cesini, D.; Roverelli, L.; Zereik, G.; D’Agostino, D. Low-power portable devices for metagenomics analysis: Fog computing makes bioinformatics ready for the Internet of Things. Futur. Gener. Comput. Syst. 2018, 88, 467–478.

    Article  Google Scholar 

  7. [7]

    Sebestyen, G.; Hangan, A.; Oniga, S.; Gál, Z. eHealth solutions in the context of Internet of Things. In 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2014, pp 1–6.

  8. [8]

    Bayo-Monton, J. L.; Martinez-Millana, A.; Han, W. S.; Fernandez-Llatas, C.; Sun, Y.; Traver, V. Wearable sensors integrated with Internet of Things for advancing eHealth care. Sensors 2018, 18, 1851.

    Article  Google Scholar 

  9. [9]

    Perumal, T.; Sulaiman, M. N.; Leong, C. Y. Internet of Things (IoT) enabled water monitoring system. In 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2015, pp 86–87.

  10. [10]

    Nagabooshanam, S.; Roy, S.; Mathur, A.; Mukherjee, I.; Krishnamurthy, S.; Bharadwaj, L. M. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci. Rep. 2019, 9, 19862.

    CAS  Article  Google Scholar 

  11. [11]

    Kocakulak, M.; Butun, I. An overview of wireless sensor networks towards internet of things. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2017, pp 1–6.

  12. [12]

    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    CAS  Article  Google Scholar 

  13. [13]

    Bandodkar, A. J.; Hung, V. W. S.; Jia, W. Z.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123–128.

    CAS  Article  Google Scholar 

  14. [14]

    Matzeu, G.; Florea, L.; Diamond, D. Advances in wearable chemical sensor design for monitoring biological fluids. Sensors Actuators B Chem. 2015, 211, 403–418.

    CAS  Article  Google Scholar 

  15. [15]

    Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.

    CAS  Article  Google Scholar 

  16. [16]

    Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

    CAS  Article  Google Scholar 

  17. [17]

    Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J. et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248.

    CAS  Article  Google Scholar 

  18. [18]

    An, B. W.; Shin, J. H.; Kim, S. Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y. G.; Cho, E. et al. Smart sensor systems for wearable electronic devices. Polymers 2017, 9, 303.

    Article  CAS  Google Scholar 

  19. [19]

    Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992.

    CAS  Article  Google Scholar 

  20. [20]

    Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    CAS  Article  Google Scholar 

  21. [21]

    Takei, K.; Gao, W.; Wang, C.; Javey, A. Physical and chemical sensing with electronic skin. Proc. IEEE 2019, 107, 2155–2167.

    CAS  Article  Google Scholar 

  22. [22]

    Wu, H.; Huang, Y. A.; Xu, F.; Duan, Y. Q.; Yin, Z. P. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv. Mater. 2016, 28, 9881–9919.

    CAS  Article  Google Scholar 

  23. [23]

    Pu, X.; Hu, W. G.; Wang, Z. L. Toward wearable self-charging power systems: The integration of energy-harvesting and storage devices. Small 2018, 14, 1702817.

    Article  CAS  Google Scholar 

  24. [24]

    Xu, W.; Huang, L. B.; Wong, M. C.; Chen, L.; Bai, G. X.; Hao, J. H. Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 2017, 7, 1601529.

    Article  CAS  Google Scholar 

  25. [25]

    Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

    CAS  Article  Google Scholar 

  26. [26]

    Glynne-Jones, P.; White, N. M. Self-powered systems: A review of energy sources. Sens. Rev. 2001, 21, 91–98.

    Article  Google Scholar 

  27. [27]

    Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  CAS  Google Scholar 

  28. [28]

    Berchmans, S.; Bandodkar, A. J.; Jia, W. Z.; Ramírez, J.; Meng, Y. S.; Wang, J. An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A 2014, 2, 15788–15795.

    CAS  Article  Google Scholar 

  29. [29]

    Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

    CAS  Article  Google Scholar 

  30. [30]

    Zhang, Y.; Zhao, Y.; Ren, J.; Weng, W.; Peng, H. S. Advances in wearable fiber-shaped lithium-ion batteries. Adv. Mater. 2016, 28, 4524–4531.

    CAS  Article  Google Scholar 

  31. [31]

    Dong, L. B.; Xu, C. J.; Li, Y.; Wu, C. L.; Jiang, B. Z.; Yang, Q.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 2016, 28, 1675–1681.

    CAS  Article  Google Scholar 

  32. [32]

    Zhang, Y.; Zhao, Y.; Cheng, X. L.; Weng, W.; Ren, J.; Fang, X.; Jiang, Y. S.; Chen, P. N.; Zhang, Z. T.; Wang, Y. G. et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem., Int. Ed. 2015, 54, 11177–11182.

    CAS  Article  Google Scholar 

  33. [33]

    Cho, S. H.; Lee, J.; Lee, M. J.; Kim, H. J.; Lee, S. M.; Choi, K. C. Plasmonically engineered textile polymer solar cells for high-performance, wearable photovoltaics. ACS Appl. Mater. Interfaces 2019, 11, 20864–20872.

    CAS  Article  Google Scholar 

  34. [34]

    Lee, G.; Kim, M.; Choi, Y. W.; Ahn, N.; Jang, J.; Yoon, J.; Kim, S. M.; Lee, J. G.; Kang, D.; Jung, H. S. et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ. Sci. 2019, 12, 3182–3191.

    CAS  Article  Google Scholar 

  35. [35]

    Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

    CAS  Article  Google Scholar 

  36. [36]

    Huang, X. C.; Zhang, L. L.; Zhang, Z.; Guo, S.; Shang, H.; Li, Y. B.; Liu, J. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron. 2019, 124–125, 40–52.

    Article  CAS  Google Scholar 

  37. [37]

    Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G R. Trends of biofuel cells for smart biomedical devices. Int. J. Hydrogen Energy 2021, 46, 3220–3229.

    CAS  Article  Google Scholar 

  38. [38]

    Jeerapan, I.; Sempionatto, J. R.; Wang, J. On-body bioelectronics: Wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 2020, 30, 1906243.

    CAS  Article  Google Scholar 

  39. [39]

    Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F. et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069.

    Article  Google Scholar 

  40. [40]

    Kim, C. S.; Yang, H. M.; Lee, J.; Lee, G. S.; Choi, H.; Kim, Y. J.; Lim, S. H.; Cho, S. H.; Cho, B. J. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 2018, 3, 501–507.

    CAS  Article  Google Scholar 

  41. [41]

    Fan, K. Q.; Liu, Z. H.; Liu, H. Y.; Wang, L. S.; Zhu, Y. M.; Yu, B. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 2017, 110, 143902.

    Article  CAS  Google Scholar 

  42. [42]

    Yang, J. H.; Cho, H. S.; Park, S. H.; Song, S. H.; Yun, K. S.; Lee, J. H. Effect of garment design on piezoelectricity harvesting from joint movement. Smart Mater. Struct. 2016, 25, 035012.

    Article  CAS  Google Scholar 

  43. [43]

    Sorayani Bafqi, M. S.; Sadeghi, A. H.; Latifi, M.; Bagherzadeh, R. Design and fabrication of a piezoelectric out-put evaluation system for sensitivity measurements of fibrous sensors and actuators. J. Ind. Text., in press, DOI: https://doi.org/10.1177/1528083719867443.

  44. [44]

    Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

    CAS  Article  Google Scholar 

  45. [45]

    Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

    CAS  Article  Google Scholar 

  46. [46]

    Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.

  47. [47]

    Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2019, 31, 1801993.

    Article  CAS  Google Scholar 

  48. [48]

    Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

    Article  CAS  Google Scholar 

  49. [49]

    Nyholm, L.; Nyström, G.; Mihranyan, A.; Stramme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

    CAS  Google Scholar 

  50. [50]

    Xu, P.; Kang, J.; Choi, J. B.; Suhr, J.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Kim, B. S.; Chou, T. W. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano 2014, 8, 9437–9445.

    CAS  Article  Google Scholar 

  51. [51]

    Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

    CAS  Article  Google Scholar 

  52. [52]

    Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

    CAS  Article  Google Scholar 

  53. [53]

    Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

    Article  CAS  Google Scholar 

  54. [54]

    Zhu, B. W.; Gong, S.; Cheng, W. L. Softening gold for elastronics. Chem. Soc. Rev. 2019, 48, 1668–1711.

    CAS  Article  Google Scholar 

  55. [55]

    Ha, M.; Park, J.; Lee, Y.; Ko, H. Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 2015, 9, 3421–3427.

    CAS  Article  Google Scholar 

  56. [56]

    Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

    Article  Google Scholar 

  57. [57]

    Lou, Z.; Li, L.; Wang, L. L.; Shen, G. Z. Recent progress of self-powered sensing systems for wearable electronics. Small 2017, 13, 1701791.

    Article  CAS  Google Scholar 

  58. [58]

    Shi, B. J.; Liu, Z.; Zheng, Q.; Meng, J. P.; Ouyang, H.; Zou, Y.; Jiang, D. J.; Qu, X. C.; Yu, M.; Zhao, L. M. et al. Body-integrated self-powered system for wearable and implantable applications. ACS Nano 2019, 13, 6017–6024.

    CAS  Article  Google Scholar 

  59. [59]

    Ahmed, A.; Hassan, I.; Helal, A. S.; Sencadas, V.; Radhi, A.; Jeong, C. K.; El-Kady, M. F. Triboelectric nanogenerator versus piezoelectric generator at low frequency (< 4 Hz): A quantitative comparison. iScience 2020, 23, 101286.

    Article  Google Scholar 

  60. [60]

    Jo, S. E.; Kim, M. S.; Kim, M. K.; Kim, H. L.; Kim, Y. J. Human body heat energy harvesting using flexible thermoelectric generator for autonomous microsystems. In Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, 2012, pp 839–841.

  61. [61]

    Alhawari, M.; Mohammad, B.; Saleh, H.; Ismail, M. Energy harvesting for self-powered wearable devices. In Analog Circuits and Signal Processing, Springer International Publishing, 2018.

  62. [62]

    Husain, A. A. F.; Hasan, W. Z. W.; Shafie, S.; Hamidon, M. N.; Pandey, S. S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791.

    CAS  Article  Google Scholar 

  63. [63]

    Sun, Y. L.; Yan, X. B. Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL 2017, 1, 1700002.

    Article  CAS  Google Scholar 

  64. [64]

    Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

    CAS  Article  Google Scholar 

  65. [65]

    You, J. B.; Dou, L. T.; Hong, Z. R.; Li, G.; Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 2013, 38, 1909–1928.

    CAS  Article  Google Scholar 

  66. [66]

    Zhang, X. L.; Johansson, E. M. J. Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J. Mater. Chem. A 2017, 5, 303–310.

    CAS  Article  Google Scholar 

  67. [67]

    Zhou, M. Y.; Al-Furjan, M. S. H.; Zou, J.; Liu, W. T. A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609.

    Article  Google Scholar 

  68. [68]

    Liu, H. C.; Zhong, J. W.; Lee, C.; Lee, S. W.; Lin, L. W. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306.

    Article  CAS  Google Scholar 

  69. [69]

    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    CAS  Article  Google Scholar 

  70. [70]

    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  71. [71]

    Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

    CAS  Article  Google Scholar 

  72. [72]

    Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  CAS  Google Scholar 

  73. [73]

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    CAS  Article  Google Scholar 

  74. [74]

    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    CAS  Article  Google Scholar 

  75. [75]

    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    CAS  Article  Google Scholar 

  76. [76]

    Chen, T.; Shi, Q. F.; Zhu, M. L.; He, T. Y.; Sun, L. N.; Yang, L.; Lee, C. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator. ACS Nano 2018, 12, 11561–11571.

    CAS  Article  Google Scholar 

  77. [77]

    Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009, 21, 2185–2189.

    CAS  Article  Google Scholar 

  78. [78]

    Kim, T.; Song, W. T.; Son, D. Y.; Ono, L. K.; Qi, Y. B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.

    CAS  Article  Google Scholar 

  79. [79]

    Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

    CAS  Article  Google Scholar 

  80. [80]

    Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790.

    CAS  Article  Google Scholar 

  81. [81]

    Borah, R.; Hughson, F. R.; Johnston, J.; Nann, T. On battery materials and methods. Mater. Today Adv. 2020, 6, 100046.

    Article  Google Scholar 

  82. [82]

    Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418.

    Article  Google Scholar 

  83. [83]

    Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984.

    Article  Google Scholar 

  84. [84]

    Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Manoharan, S.; Kim, S. J. High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. J. Mater. Chem. A 2019, 7, 21693–21703.

    CAS  Article  Google Scholar 

  85. [85]

    Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Kim, S. J. Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorg. Chem. Front. 2019, 6, 1775–1784.

    CAS  Article  Google Scholar 

  86. [86]

    Sahoo, S.; Pazhamalai, P.; Mariappan, V. K.; Veerasubramani, G. K.; Kim, N. J.; Kim, S. J. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors. Inorg. Chem. Front. 2020, 7, 1492–1502.

    CAS  Article  Google Scholar 

  87. [87]

    Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730

    CAS  Article  Google Scholar 

  88. [88]

    Kim, B. K.; Sy, S.; Yu, A. P.; Zhang, J. J. Electrochemical super-capacitors for energy storage and conversion. In Handbook of Clean Energy Systems; John Wiley & Sons, Ltd.: Hoboken, 2015; pp 1–25.

    Google Scholar 

  89. [89]

    Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

    Article  CAS  Google Scholar 

  90. [90]

    Shahzad, S.; Shah, A.; Kowsari, E.; Iftikhar, F. J.; Nawab, A.; Piro, B.; Akhter, M. S.; Rana, U. A.; Zou, Y. J. Ionic liquids as environmentally benign electrolytes for high-performance supercapacitors. Glob. Chall. 2018, 3, 1800023.

    Article  Google Scholar 

  91. [91]

    Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

    CAS  Article  Google Scholar 

  92. [92]

    Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250.

    Article  Google Scholar 

  93. [93]

    McDonagh, C.; Burke, C. S.; MacCraith, B. D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422.

    CAS  Article  Google Scholar 

  94. [94]

    Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781–2800.

    CAS  Article  Google Scholar 

  95. [95]

    Zhang, C.; Vetelino, J. F. Chemical sensors based on electrically sensitive quartz resonators. Sensors Actuators B Chem. 2003, 91, 320–325.

    CAS  Article  Google Scholar 

  96. [96]

    Janata, J.; Josowicz, M. Chemical modulation of work function as a transduction mechanism for chemical sensors. Acc. Chem. Res. 1998, 31, 241–248.

    CAS  Article  Google Scholar 

  97. [97]

    Nylander, C. Chemical and biological sensors. J. Phys. E 1985, 18, 736–750.

    CAS  Article  Google Scholar 

  98. [98]

    Dickert, F. L.; Forth, P.; Lieberzeit, P. A.; Voigt, G. Quality control of automotive engine oils with mass-sensitive chemical sensors—QCMs and molecularly imprinted polymers. Fresenius J. Anal. Chem. 2000, 366, 802–806.

    CAS  Article  Google Scholar 

  99. [99]

    Dickert, F. L.; Tortschanoff, M.; Weber, K.; Zenkel, M. Process control with mass-sensitive chemical sensors—Cyclodextrine modified polymers as coatings. Fresenius J. Anal. Chem. 1998, 362, 21–24.

    CAS  Article  Google Scholar 

  100. [100]

    Lucklum, R.; Behling, C.; Hauptmann, P. Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors. Anal. Chem. 1999, 71, 2488–2496.

    CAS  Article  Google Scholar 

  101. [101]

    Canevali, C.; Mari, C. M.; Mattoni, M.; Morazzoni, F.; Ruffo, R.; Scotti, R.; Russo, U.; Nodari, L. Mechanism of sensing NO in argon by nanocrystalline SnO2: Electron paramagnetic resonance, Mössbauer and electrical study. Sensors Actuators B Chem. 2004, 100, 228–235.

    CAS  Article  Google Scholar 

  102. [102]

    Pandian, R. P.; Kim, Y. I.; Woodward, P. M.; Zweier, J. L.; Manoharan, P. T.; Kuppusamy, P. The open molecular framework of paramagnetic lithium octabutoxy-naphthalocyanine: Implications for the detection of oxygen and nitric oxide using EPR spectroscopy. J. Mater. Chem. 2006, 16, 3609–3618.

    CAS  Article  Google Scholar 

  103. [103]

    Baldrati, L.; Rinaldi, C.; Manuzzi, A.; Asa, M.; Aballe, L.; Foerster, M.; Biskup, N.; Varela, M.; Cantoni, M.; Bertacco, R. Electrical switching of magnetization in the artificial multiferroic CoFeB/BaTiO3. Adv. Electron. Mater. 2016, 2, 1600085.

    Article  CAS  Google Scholar 

  104. [104]

    Piletsky, S. A.; Turner, A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317–323.

    CAS  Article  Google Scholar 

  105. [105]

    Zorn, M. E.; Gibbons, R. D.; Sonzogni, W. C. Evaluation of approximate methods for calculating the limit of detection and limit of quantification. Environ. Sci. Technol. 1999, 33, 2291–2295.

    CAS  Article  Google Scholar 

  106. [106]

    Currie, L. A. Detection and quantification limits: Origins and historical overview. Anal. Chim. Acta 1999, 391, 127–134.

    CAS  Article  Google Scholar 

  107. [107]

    Davide, F. A. M.; Di Natale, C.; D’Amico, A. Sensor array figures of merit: Definitions and properties. Sensors Actuators B Chem. 1993, 13, 327–332.

    CAS  Article  Google Scholar 

  108. [108]

    Yang, Y.; Zhang, H. L.; Chen, J.; Lee, S.; Hou, T. C.; Wang, Z. L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.

    CAS  Article  Google Scholar 

  109. [109]

    Moo, J. G. S.; Pumera, M. Chemical energy powered nano/micro/macromotors and the environment. Chem.—Eur. J. 2015, 21, 58–72.

    CAS  Article  Google Scholar 

  110. [110]

    Park, J.; Lee, Y.; Ha, M.; Cho, S.; Ko, H. Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. J. Mater. Chem. B 2016, 4, 2999–3018.

    CAS  Article  Google Scholar 

  111. [111]

    Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 2016, 6, 1501778.

    Article  CAS  Google Scholar 

  112. [112]

    El-hami, M.; Glynne-Jones, P.; White, N. M.; Hill, M.; Beeby, S.; James, E.; Brown, A. D.; Ross, J. N. Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A Phys. 2001, 92, 335–342.

    CAS  Article  Google Scholar 

  113. [113]

    Li, W. J.; Wen, Z.; Wong, P. K.; Chan, G. M. H.; Leong, P. H. W. A micro-machined vibration-induced power generator for low power sensors of robotic systems. In Proceedings of the Sth International Symposium on Robotics with Applications, Maui, Hawaii, USA, 2000.

  114. [114]

    Shearwood, C.; Yates, R. B. Development of an electromagnetic micro-generator. Electron. Lett. 1997, 33, 1883–1884.

    Article  Google Scholar 

  115. [115]

    Williams, C. B.; Shearwood, C.; Harradine, M. A.; Mellor, P. H.; Birch, T. S.; Yates, R. B. Development of an electromagnetic microgenerator. IEEProc. Circuits Devices Syst. 2001, 148, 337–342.

    Article  Google Scholar 

  116. [116]

    Amirtharajah, R.; Chandrakasan, A. P. Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits 1998, 33, 687–695.

    Article  Google Scholar 

  117. [117]

    Umeda, M.; Nakamura, K.; Ueha, S. Energy storage characteristics of a piezo-generator using impact induced vibration. Jpn. J. Appl. Phys. 1997, 36, 3146–3151.

    CAS  Article  Google Scholar 

  118. [118]

    Wang, L.; He, T.; Zhang, Z. X.; Zhao, L. B.; Lee, C.; Luo, G. X.; Mao, Q.; Yang, P.; Lin, Q. J.; Li, X. et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy, 2020, 802, 105555.

    Google Scholar 

  119. [119]

    Ross, J. N. Optical power for sensor interfaces. Meas. Sci. Technol. 1992, 3, 651–655.

    Article  Google Scholar 

  120. [120]

    Kuntz, W.; Mores, R. Electrically insulated smart sensors: Principles for operation and supply. Sensors Actuators A Phys. 1991, 26, 497–505.

    Article  Google Scholar 

  121. [121]

    Gross, W. Optical power supply for fiber-optic hybrid sensors. Sensors Actuators A Phys. 1991, 26, 475–480.

    Article  Google Scholar 

  122. [122]

    Lee, J. B.; Chen, Z.; Allen, M. G.; Rohatgi, A.; Arya, R. A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. J. Microelectromech. Syst. 1995, 4, 102–108.

    CAS  Article  Google Scholar 

  123. [123]

    van der Woerd, A. C.; Bais, M. A.; de Jong, L. P.; Van Roermund, A. H. M. Highly efficient micro-power converter between a solar cell and a rechargeable lithium-ion battery. In Proceedings Volume 3328, Smart Structures and Materials 1998: Smart Electronics and MEMS, San Diego, CA, USA, 1998, pp 315–325.

  124. [124]

    Linder, E. G.; Christian, S. M. The use of radioactive material for the generation of high voltage. J. Appl. Phys. 1952, 23, 1213–1216.

    CAS  Article  Google Scholar 

  125. [125]

    Starner, T. Human-powered wearable computing. IBM Syst. J. 1996, 35, 618–629.

    Article  Google Scholar 

  126. [126]

    Stordeur, M.; Stark, I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proceedings of the 16th International Conference on Thermoelectrics, Dresden, Germany, 1997, pp 575–577.

  127. [127]

    Brown, P. M. Apparatus for direct conversion of radioactive decay energy to electrical energy. U.S. Patent 4,835,433, May 30, 1989.

  128. [128]

    Kumar, S. Atomic batteries: Energy from radioactivity. J. Nucl. Energy Sci. Power Gener. Technol. 2015, 5, 1–8.

    Google Scholar 

  129. [129]

    Bandodkar, A. J.; Wang, J. Wearable biofuel cells: A review. Electroanalysis 2016, 28, 1188–1200.

    CAS  Article  Google Scholar 

  130. [130]

    Zhou, M. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review. Electroanalysis 2015, 27, 1786–1810.

    CAS  Article  Google Scholar 

  131. [131]

    Jeerapan, I.; Sempionatto, J. R.; Pavinatto, A.; You, J. M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353.

    CAS  Article  Google Scholar 

  132. [132]

    Chen, H. J.; Zhang, M.; Bo, R. H.; Barugkin, C.; Zheng, J. H.; Ma, Q. S.; Huang, S. J.; Ho-Baillie, A. W. Y.; Catchpole, K. R.; Tricoli, A. Superior self-powered room-temperature chemical sensing with light-activated inorganic halides perovskites. Small 2018, 14, 1702571.

    Article  CAS  Google Scholar 

  133. [133]

    Gao, C. M.; Yu, H. H.; Wang, Y. H.; Liu, D. Z.; Wen, T.; Zhang, L.; Ge, S. G.; Yu, J. H. Paper-based constant potential electro-chemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell. Anal. Chem. 2020, 92, 6822–6826.

    CAS  Article  Google Scholar 

  134. [134]

    Kakavelakis, G.; Gagaoudakis, E.; Petridis, K.; Petromichelaki, V.; Binas, V.; Kiriakidis, G.; Kymakis, E. Solution processed CH3NH3PbI3-xClx, perovskite based self-powered ozone sensing element operated at room temperature. ACS Sensors 2018, 3, 135–142.

    CAS  Article  Google Scholar 

  135. [135]

    Rasmussen, M.; Minteer, S. D. Self-powered herbicide biosensor utilizing thylakoid membranes. Anal. Methods 2013, 5, 1140–1144.

    CAS  Article  Google Scholar 

  136. [136]

    He, L. H.; Zhang, Q. S.; Gong, C. L.; Liu, H.; Hu, F. Q.; Zhong, F.; Wang, G. J.; Su, H. H.; Wen, S.; Xiang, S. C. et al. The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sensors Actuators B Chem. 2020, 310, 127842.

    CAS  Article  Google Scholar 

  137. [137]

    Wang, Y. H.; Gao, C. M.; Ge, S. G.; Zhang, L.; Yu, J. H.; Yan, M. Self-powered sensing platform equipped with Prussian blue electro-chromic display driven by photoelectrochemical cell. Biosens. Bioelectron. 2017, 89, 728–734.

    CAS  Article  Google Scholar 

  138. [138]

    Kang, K.; Na, K.; Lee, J. Y.; Parkr, I. Development of NO2 gas sensor using colorimetric film and organic solar cell in self-powered system. In Proceedings of the 17th International Meeting on Chemical Sensors — IMCS 201S, Vienna, Austria, 2018, pp 466–467.

  139. [139]

    Hoffmann, M. W. G.; Mayrhofer, L.; Casals, O.; Caccamo, L.; Hernandez-Ramirez, F.; Lilienkamp, G.; Daum, W.; Moseler, M.; Waag, A.; Shen, H. et al. A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes. Adv. Mater. 2014, 26, 8017–8022.

    CAS  Article  Google Scholar 

  140. [140]

    Juan, Y. M.; Chang, S. J.; Hsueh, H. T.; Chen, T. C.; Huang, S. W.; Lee, Y. H.; Hsueh, T. J.; Wu, C. L. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sensors Actuators B Chem. 2015, 219, 43–49.

    CAS  Article  Google Scholar 

  141. [141]

    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    CAS  Article  Google Scholar 

  142. [142]

    Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nano-generator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

    CAS  Article  Google Scholar 

  143. [143]

    Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

    CAS  Article  Google Scholar 

  144. [144]

    Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    CAS  Article  Google Scholar 

  145. [145]

    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    CAS  Article  Google Scholar 

  146. [146]

    Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

    CAS  Article  Google Scholar 

  147. [147]

    Yang, Y.; Zhang, H. L.; Lin, Z. H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

    CAS  Article  Google Scholar 

  148. [148]

    Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

    CAS  Article  Google Scholar 

  149. [149]

    Guo, D. Y.; Shan, C. X.; Qu, S. N.; Shen, D. Z. Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films. Sci. Rep. 2014, 4, 7469.

    CAS  Article  Google Scholar 

  150. [150]

    Meng, J. P.; Li, H.; Zhao, L. M.; Lu, J. F.; Pan, C. F.; Zhang, Y.; Li, Z. Triboelectric nanogenerator enhanced Schottky nanowire sensor for highly sensitive ethanol detection. Nano Lett. 2020, 20, 4968–4974.

    CAS  Article  Google Scholar 

  151. [151]

    Wang, S.; Xie, G. Z.; Tai, H. L.; Su, Y. J.; Yang, B. X.; Zhang, Q. P.; Du, X. S.; Jiang, Y. D. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy 2018, 51, 231–240.

    CAS  Article  Google Scholar 

  152. [152]

    Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

    CAS  Article  Google Scholar 

  153. [153]

    Gu, D.; Li, X. G.; Wang, H. S.; Li, M. Z.; Xi, Y.; Chen, Y. P.; Wang, J.; Rumyntseva, M. N.; Gaskov, A. M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sensors Actuators B Chem. 2018, 256, 992–1000.

    CAS  Article  Google Scholar 

  154. [154]

    Su, Y. J.; Xie, G. Z.; Tai, H. L.; Li, S. D.; Yang, B. X.; Wang, S.; Zhang, Q. P.; Du, H. F.; Zhang, H. L.; Du, X. S. et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316–324.

    CAS  Article  Google Scholar 

  155. [155]

    Zhao, K.; Gu, G. Q.; Zhang, Y. N.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M. L.; Cheng, G.; Du, Z. L. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905.

    CAS  Article  Google Scholar 

  156. [156]

    Chang, J. Y.; Meng, H.; Li, C. S.; Gao, J. M.; Chen, S. Q.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087.

    CAS  Article  Google Scholar 

  157. [157]

    Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

    CAS  Article  Google Scholar 

  158. [158]

    Zhu, H. R.; Wang, N.; Xu, Y.; Chen, S. W.; Willander, M.; Cao, X.; Wang, Z. L. Triboelectric nanogenerators based on melamine and self-powered high-sensitive sensors for melamine detection. Adv. Funct. Mater. 2016, 26, 3029–3035.

    CAS  Article  Google Scholar 

  159. [159]

    Yu, R. M.; Pan, C. F.; Chen, J.; Zhu, G.; Wang, Z. L. Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 2013, 23, 5868–5874.

    CAS  Article  Google Scholar 

  160. [160]

    Zhang, D. Z.; Yang, Z. M.; Li, P.; Pang, M. S.; Xue, Q. Z. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974.

    CAS  Article  Google Scholar 

  161. [161]

    Lin, Y. J.; Deng, P.; Nie, Y. X.; Hu, Y. F.; Xing, L. L.; Zhang, Y.; Xue, X. Y. Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 2014, 6, 4604–4610.

    CAS  Article  Google Scholar 

  162. [162]

    Zhu, D.; Fu, Y. M.; Zang, W. L.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires. Mater. Lett. 2016, 166, 288–291.

    CAS  Article  Google Scholar 

  163. [163]

    Zhao, Y. Y.; Lai, X.; Deng, P.; Nie, Y. X.; Zhang, Y.; Xing, L. L.; Xue, X. Y. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature. Nanotechnology 2014, 25, 115502.

    Article  CAS  Google Scholar 

  164. [164]

    Fu, Y. M.; Nie, Y. X.; Zhao, Y. Y.; Wang, P. L.; Xing, L. L.; Zhang, Y.; Xue, X. Y. Detecting liquefied petroleum gas (LPG) at room temperature using ZnSnO3/ZnO nanowire piezo-nanogenerator as self-powered gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 10482–10490.

    CAS  Article  Google Scholar 

  165. [165]

    Zang, W. L.; Nie, Y. X.; Zhu, D.; Deng, P.; Xing, L. L.; Xue, X. Y. Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 2014, 118, 9209–9216.

    CAS  Article  Google Scholar 

  166. [166]

    Qu, Z.; Fu, Y. M.; Yu, B. W.; Deng, P.; Xing, L. L.; Xue, X. Y. High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sensors Actuators B Chem. 2016, 222, 78–86.

    CAS  Article  Google Scholar 

  167. [167]

    Xue, X.; Nie, Y. X.; He, B.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 2013, 24, 225501.

    Article  CAS  Google Scholar 

  168. [168]

    Nie, Y. X.; Deng, P.; Zhao, Y. Y.; Wang, P. L.; Xing, L. L.; Zhang, Y.; Xue, X. Y. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor. Nanotechnology 2014, 25, 265501.

    Article  CAS  Google Scholar 

  169. [169]

    Zhu, D.; Fu, Y. M.; Zang, W. L.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Piezo/active humidity sensing of CeO2/ZnO and SnO2/ZnO nanoarray nanogenerators with high response and large detecting range. Sensors Actuators B Chem. 2014, 205, 12–19.

    CAS  Article  Google Scholar 

  170. [170]

    Modaresinezhad, E.; Darbari, S. Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sensors Actuators B Chem. 2016, 237, 358–366.

    CAS  Article  Google Scholar 

  171. [171]

    Zang, W. L.; Wang, W.; Zhu, D.; Xing, L. L.; Xue, X. Y. Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv. 2014, 4, 56211–56215.

    CAS  Article  Google Scholar 

  172. [172]

    Fu, Y. M.; He, H. X.; Zhao, T. M.; Dai, Y. T.; Han, W. X.; Ma, J.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018, 10, 76.

    Article  CAS  Google Scholar 

  173. [173]

    Selvarajan, S.; Alluri, N. R.; Chandrasekhar, A.; Kim, S. J. BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application. Sensors Actuators B Chem. 2016, 234, 395–403.

    CAS  Article  Google Scholar 

  174. [174]

    Abisegapriyan, K. S.; Raj, N. P. M. J.; Alluri, N. R.; Chandrasekhar, A.; Kim, S. J. All in one transitional flow-based integrated self-powered catechol sensor using BiFeO3 nanoparticles. Sensors Actuators B Chem. 2020, 320, 128417.

    Article  CAS  Google Scholar 

  175. [175]

    Wang, L. L.; Shao, H. H.; Lu, X. Z.; Wang, W. J.; Zhang, J. R.; Song, R. B.; Zhu, J. J. A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem. Sci. 2018, 9, 8482–8491.

    CAS  Article  Google Scholar 

  176. [176]

    Lin, Y. J.; Chen, J. Q.; Tavakoli, M. M.; Gao, Y.; Zhu, Y. D.; Zhang, D. Q.; Kam, M.; He, Z. B.; Fan, Z. Y. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, e1804285.

    Article  CAS  Google Scholar 

  177. [177]

    Kim, M. S.; Kim, J. W.; Yun, J.; Jeong, Y. R.; Jin, S. W.; Lee, G.; Lee, H.; Kim, D. S.; Keum, K.; Ha, J. S. A rationally designed flexible self-healing system with a high performance supercapacitor for powering an integrated multifunctional sensor. Appl. Surf. Sci. 2020, 515, 146018.

    CAS  Article  Google Scholar 

  178. [178]

    Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R. Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Sensors Actuators B Chem. 2010, 144, 1–5.

    CAS  Article  Google Scholar 

  179. [179]

    Tan, H. M.; Manh Hung, C.; Ngoc, T. M.; Nguyen, H.; Duc Hoa, N.; Van Duy, N.; Van Hieu, N. Novel self-heated gas sensors using on-chip networked nanowires with ultralow power consumption. ACS Appl. Mater. Interfaces 2017, 9, 6153–6162.

    CAS  Article  Google Scholar 

  180. [180]

    Tsao, Y. H.; Husain, R. A.; Lin, Y. J.; Khan, I.; Chen, S. W.; Lin, Z. H. A self-powered mercury ion nanosensor based on the thermoelectric effect and chemical transformation mechanism. Nano Energy 2019, 62, 268–274.

    CAS  Article  Google Scholar 

  181. [181]

    Zheng, C. Z.; Xiang, L. Y.; Jin, W. L.; Shen, H. G.; Zhao, W. R.; Zhang, F. J.; Di, C. A.; Zhu, D. B. A flexible self-powered sensing element with integrated organic thermoelectric generator. Adv. Mater. Technol. 2019, 4, 1900247.

    CAS  Article  Google Scholar 

  182. [182]

    He, T.; Shi, Q. F.; Wang, H.; Wen, F.; Chen, T.; Ouyang, J. Y.; Lee, C. Beyond energy harvesting—Multi-functional triboelectric nanosensors on a textile. Nano Energy 2019, 57, 338–352.

    CAS  Article  Google Scholar 

  183. [183]

    Dong, B. W.; Shia, Q. F.; Yang, Y. Q.; Wen, F.; Zhang, Z. X.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Human Resource Development (MHRD), India, through a Centre of Excellence grant (CENEMA, RP-074) and also by the Department of Science and Technology (DST), India via grant no. DST-MES (RP-155). Part of this work has been carried out with financial support from the National Aluminum Company Limited (NALCO) via grant no. RP-199. C. S. R. acknowledges Department of Science and Technology (DST)-SERB Early Career Research project (No. ECR/2017/001850), DST-Nanomission (DST/NM/NT/2019/205(G)), Karnataka Science and Technology Promotion Society (KSTePS/VGST-RGS-F/2018-19/GRD No. 829/315). S. S. acknowledges the DST-SERB for a National Post-Doctoral Fellowship (No. PDF/2020/000620).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chandra Sekhar Rout or Dattatray J. Late.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aaryashree, Sahoo, S., Walke, P. et al. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3330-8

Download citation

Keywords

  • chemical sensors
  • self-powered
  • wearable electronics
  • smart sensors