Enhancing the long-term Na-storage cyclability of conversion-type iron selenide composite by construction of 3D inherited hyperbranched polymer buffering matrix

Abstract

Electrochemical conversion reactions provide more selections for Na-storage materials, but the reaction suffers from low reversibility and poor cyclability. Introducing an electrochemically inactive component is a common strategy, but the effect is quite limited since it could not stabilize the structure during long-term cycling. In this study, a new approach is developed using an amino group-functioned hyperbranched polymer (AHP) as a template and electrode additive for the design of high-performance FeSe2-AHP composite with chemical interaction. The assembled FeSe2-AHP composite nanoneedles were prepared by the selenylation of FeS-AHP composite microflowers and entirely inherit the polymer network from the precursor. The amino groups of AHP in composite coordinate with iron cations to achieve uniform polymer dispersion in the composite, and maintain the molecular level mixed state during the long-term cycling. Moreover, the in-situ constructed uniform 3D elastic polymer network effectively accommodates volume expansion and alleviates nanoparticle aggregation during sodiation/de-sodiation. FeSe2-AHP composite provides a superior rate capability (584.8 mAh·g−1 at 20 A·g−1) and a remarkable cyclability with a capacity retention rate of 93.3% after 2,000 cycles. FeSe2-AHP composite shows a high pseudocapacitive behavior for the abundant nanometer interface established by AHP, enhancing the solid-state Na+ diffusion. The FeSe2-AHP anode is also compatible with Na3V2(PO4)3/C cathode in a full Na-ion battery, which provides a high-power performance (powering 51 LEDs). The work herein highlights an innovative and efficient strategy for conversion-type material design and demonstrates the function of chemical interaction of polymer additive in the enhancement of long-term cyclability for conversion electrode.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Article  Google Scholar 

  2. [2]

    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    CAS  Article  Google Scholar 

  3. [3]

    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Article  Google Scholar 

  4. [4]

    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    CAS  Article  Google Scholar 

  5. [5]

    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    CAS  Article  Google Scholar 

  6. [6]

    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    CAS  Article  Google Scholar 

  7. [7]

    Zhang, H.; Hasa, I.; Passerini, S. Beyond insertion for Na-ion batteries: Nanostructured alloying and conversion anode materials. Adv. Energy Mater. 2018, 8, 1702582.

    Article  CAS  Google Scholar 

  8. [8]

    Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  CAS  Google Scholar 

  9. [9]

    Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

    CAS  Article  Google Scholar 

  10. [10]

    Wang, A. N.; Hong, W. W.; Yang, L.; Tian, Y.; Qiu, X. J.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Bi-based electrode materials for alkali metal-ion batteries. Small 2020, 16, 2004022.

    CAS  Article  Google Scholar 

  11. [11]

    Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    CAS  Article  Google Scholar 

  12. [12]

    Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876–15887.

    CAS  Article  Google Scholar 

  13. [13]

    Wei, X. J.; Wang, X. P.; Tan, X.; An, Q. Y.; Mai, L. Q. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804458.

    Article  CAS  Google Scholar 

  14. [14]

    Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.

    Article  CAS  Google Scholar 

  15. [15]

    Zhang, Y.; Xia, X. H.; Liu, B.; Deng, S. J.; Xie, D.; Liu, Q.; Wang, Y. D.; Wu, J. B.; Wang, X. L.; Tu, J. P. Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342.

    Article  CAS  Google Scholar 

  16. [16]

    Lu, Y.; Lu, Y. Y.; Niu, Z. Q.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469.

    Article  CAS  Google Scholar 

  17. [17]

    Su, D. S.; Schlögl, R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 2010, 3, 136–168.

    CAS  Article  Google Scholar 

  18. [18]

    Nishihara, H.; Kyotani, T. Templated nanocarbons for energy storage. Adv. Mater. 2012, 24, 4473–4498.

    CAS  Article  Google Scholar 

  19. [19]

    Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.

    CAS  Article  Google Scholar 

  20. [20]

    Li, T.; Qin, A. Q.; Yang, L. L.; Chen, J.; Wang, Q. F.; Zhang, D. H.; Yang, H. X. In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 19900–19907.

    CAS  Article  Google Scholar 

  21. [21]

    Zhang, Q. F.; Uchaker, E.; Candelariaza, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    CAS  Article  Google Scholar 

  22. [22]

    Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    CAS  Article  Google Scholar 

  23. [23]

    Liang, Y. R.; Lai, W. H.; Miao, Z. C.; Chou, S. L. Nanocomposite materials for the sodium-ion battery: A review. Small 2018, 14, 1702514.

    Article  CAS  Google Scholar 

  24. [24]

    Li, T.; Qin, A. Q.; Wang, H. T.; Wu, M. Y.; Zhang, Y. Y.; Zhang, Y. J.; Zhang, D. H.; Xu, F. A high-performance hybrid Mg2+/Li+ battery based on hierarchical copper sulfide microflowers conversion cathode. Electrochim. Acta 2018, 263, 168–175.

    CAS  Article  Google Scholar 

  25. [25]

    Qin, A. Q.; Wu, H.; Chen, J.; Li, T.; Chen, S. H.; Zhang, D. H.; Xu, F. Constructing hyperbranched polymers as a stable elastic framework for copper sulfide nanoplates for enhancing sodium-storage performance. Nanoscale 2019, 11, 7188–7198.

    CAS  Article  Google Scholar 

  26. [26]

    Li, T.; Li, H.; Qin, A. Q.; Wu, H.; Zhang, D. H.; Xu, F. Assembled NiS nanoneedles anode for Na-ion batteries: Enhanced the performance by organic hyperbranched polymer electrode additives. J. Power Sources 2020, 451, 227796.

    CAS  Article  Google Scholar 

  27. [27]

    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

    CAS  Article  Google Scholar 

  28. [28]

    Wei, X. J.; Tang, C. J.; An, Q. Y.; Yan, M. Y.; Wang, X. P.; Hu, P.; Cai, X. Y.; Mai, L. Q. FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 2017, 10, 3202–3211.

    CAS  Article  Google Scholar 

  29. [29]

    Cho, J. S.; Lee, J. K.; Kang, Y. C. Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci. Rep. 2016, 6, 23699.

    CAS  Article  Google Scholar 

  30. [30]

    Fan, H. S.; Yu, H.; Zhang, Y. F.; Guo, J.; Wang, Z.; Wang, H.; Zhao, N.; Zheng, Y.; Du, C. F.; Dai, Z. F. et al. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 2018, 10, 48–55.

    Article  Google Scholar 

  31. [31]

    Ge, P.; Hou, H. S.; Li, S. J.; Yang, L.; Ji, X. B. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 2018, 28, 1801765.

    Article  CAS  Google Scholar 

  32. [32]

    Zhao, F. P.; Shen, S. D.; Cheng, L.; Ma, L.; Zhou, J. H.; Ye, H. L.; Han, N.; Wu, T. P.; Li, Y. G.; Lu, J. Improved sodium-ion storage performance of ultrasmall iron selenide nanoparticles. Nano Lett. 2017, 17, 4137–4142.

    CAS  Article  Google Scholar 

  33. [33]

    Park, J. S.; Jeong, S. Y.; Jeon, K. M.; Kang, Y. C.; Cho, J. S. Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 2018, 339, 97–107.

    CAS  Article  Google Scholar 

  34. [34]

    Tang, Y. C.; Zhao, Z. B.; Hao, X. J.; Wei, Y.; Zhang, H.; Dong, Y. F.; Wang, Y. W.; Pan, X.; Hou, Y. N.; Wang, X. Z. et al. Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 2019, 7, 4469–4479.

    CAS  Article  Google Scholar 

  35. [35]

    Fan, H. H.; Li, H. H.; Wang, Z. W.; Li, W. L.; Guo, J. Z.; Fan, C. Y.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: Synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 2019, 11, 47886–47893.

    CAS  Article  Google Scholar 

  36. [36]

    Tian, W. Z.; Ma, W. Z.; Feng, Z. Y.; Tian, F.; Li, H. B.; Liu, J.; Xiong, S. L. Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties. J. Energy Chem. 2020, 44, 97–105.

    Article  Google Scholar 

  37. [37]

    Chen, S.; Huang, S. Z.; Zhang, Y. F.; Fan, S.; Yan, D.; Shang, Y.; Pam, M. E.; Ge, Q.; Shi, Y. M.; Yang, H. Y. Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano Energy 2020, 69, 104389.

    CAS  Article  Google Scholar 

  38. [38]

    Qi, S. H.; Mi, L. W.; Song, K. M.; Yang, K. W.; Ma, J. M.; Feng, X. M.; Zhang, J. M.; Chen, W. H. Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 2019, 123, 2775–2782

    CAS  Article  Google Scholar 

  39. [39]

    Yang, D.; Chen, W. H.; Zhang, X. X.; Mi, L. M.; Liu, C. T.; Chen, L. J.; Guan, X. X.; Cao, Y. L.; Shen, C. Y. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 19709–19718.

    CAS  Article  Google Scholar 

  40. [40]

    Liu, Y.; Fang, Y. J.; Zhao, Z. W.; Yuan, C. Z.; Lou, X. W. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052.

    Article  CAS  Google Scholar 

  41. [41]

    Zhou, M.; Tao, H. W.; Wang, K. L.; Cheng, S. J.; Jiang, K. Nano-embedded microstructured FeS2@C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte. J. Mater. Chem. A 2018, 6, 24425–24432.

    CAS  Article  Google Scholar 

  42. [42]

    Zhang, D. H.; Liu, T. T.; Chen, S. F.; Miao, M. H.; Cheng, J.; Zhang, A. Q.; Chen, S. H. Amino-ended hyperbranched polyamide as template for tuning the morphology of self-assembled ZnS particles. Mater. Chem. Phys. 2016, 184, 162–171.

    Article  CAS  Google Scholar 

  43. [43]

    Fu, T. T.; Chen, Y. Y.; Hao, J. L.; Wang, X. Y.; Liu, G.; Li, Y. G.; Liu, Z.; Cheng, L. Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. Nanoscale 2015, 7, 20757–20768.

    CAS  Article  Google Scholar 

  44. [44]

    Fang, J. Q.; Wang, S. Q.; Li, Z. T.; Chen, H. B.; Xia, L.; Ding, L. X.; Wang, H. H. Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 1180–1185.

    CAS  Article  Google Scholar 

  45. [45]

    Zhang, Z.; Shi, X. D.; Yang, X.; Fu, Y.; Zhang, K.; Lai, Y. Q.; Li, J. Nanooctahedra particles assembled FeSe2 microspheres embedded into sulfur-doped reduced graphene oxide sheets as a promising anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13849–13856.

    CAS  Article  Google Scholar 

  46. [46]

    Li, J. C.; Xiao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal. 2019, 9, 5929–5934.

    CAS  Article  Google Scholar 

  47. [47]

    Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917.

    CAS  Article  Google Scholar 

  48. [48]

    Zhao, Y. L.; Cao, X. X.; Fang, G. Z.; Wang, Y. P.; Yang, H. L.; Liang, S. Q.; Pan, A. Q.; Cao, G. Z. Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem. Eng. J. 2018, 339, 162–169.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Hubei Provincial Natural Science Foundation (Nos. 2019CFB620 and 2019CFB452), Innovation group of Hubei Natural Science Foundation (No. 2018CFA023), and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (No. CZY20022).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ting Li or Daohong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hu, C., Xia, Y. et al. Enhancing the long-term Na-storage cyclability of conversion-type iron selenide composite by construction of 3D inherited hyperbranched polymer buffering matrix. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3320-4

Download citation

Keywords

  • Na-ion batteries
  • conversion materials
  • hyperbranched polymer
  • iron selenide
  • chemical interaction