Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance


The energy crisis has always been a widely concerned problem. It is an urgent need for green and renewable energy technologies to achieve sustainable development, and the photo-assisted charging energy storage devices provide a new way to realize the sustainable utilization of solar energy. Here, we fabricated a photo-assisted charging fibrous supercapacitor (NM2P1) with Ti3C2Tx-based hybrid fibre modified by nitrogen-doped carbon dots (NCDs). The NM2P1 fibre provides a volumetric capacitance of 1,445 F·cm−3 (630 F·g−1) at 10 A·cm−3 under photo-assisted charging, which increases by 35.9% than that of dark condition (1,063 F·cm−3/464 F·g−1). Furthermore, the NM2P1 fibrous supercapacitor device shows that the maximum volumetric energy density and volumetric power density are 18.75 mWh·cm−3 and 8,382 mW·cm−3. Notably, the transient photovoltage (TPV) test was used to further confirm that NCDs as a photosensitizer enhance the light absorption capacity and faster charge transfer kinetics of NM2P1 fibre. This work directly exploits solar energy to improve the overall performance of supercapacitor, which opens up opportunities for the utilization of renewable energy and the development of photosensitive energy equipment.

This is a preview of subscription content, access via your institution.


  1. [1]

    Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    CAS  Article  Google Scholar 

  2. [2]

    Irishika, D.; Onitsuka, Y.; Imamura, K.; Kobayashi, H. Improvement of conversion efficiency of silicon solar cells by submicron-textured rear reflector obtained by metal-assisted chemical etching. Sol. RRL 2017, 1, 1700061.

    Article  CAS  Google Scholar 

  3. [3]

    Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244.

    CAS  Article  Google Scholar 

  4. [4]

    Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.

    CAS  Article  Google Scholar 

  5. [5]

    Liang, J.; Zhu, G. Y.; Lu, Z. P.; Zhao, P. Y.; Wang, C. X.; Ma, Y.; Xu, Z. R.; Wang, Y. R.; Hu, Y.; Ma, L. B. et al. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. J. Mater. Chem. A 2018, 6, 2047–2052.

    CAS  Article  Google Scholar 

  6. [6]

    Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Graetzel, M.; Cheng, Y. B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782–1787.

    CAS  Article  Google Scholar 

  7. [7]

    Yu, M. Z; McCulloch, W. D.; Beauchamp, D. R.; Huang, Z. J.; Ren, X. D.; Wu, Y. Y. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 2015, 137, 8332–8335.

    CAS  Article  Google Scholar 

  8. [8]

    Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photo-charging lithiumion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

    CAS  Article  Google Scholar 

  9. [9]

    Xu, J.; Ku, Z. L.; Zhang, Y. Q.; Chao, D. L.; Fan, H. J. Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 2016, 1, 1600074.

    Article  CAS  Google Scholar 

  10. [10]

    Liao, S. C.; Zong, X.; Seger, B.; Pedersen, T.; Yao, T. T.; Ding, C. M.; Shi, J. Y.; Chen, J.; Li, C. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 2016, 7, 11474.

    CAS  Article  Google Scholar 

  11. [11]

    Liang, J.; Zhu, G. Y.; Wang, C. X.; Wang, Y. R.; Zhu, H. F.; Hu, Y.; Lv, H. L.; Chen, R. P.; Ma, L. B.; Chen, T. et al. MoS2-based all-purpose fibrous electrode and self-powering energy fiber for efficient energy harvesting and storage. Adv. Energy Mater. 2017, 7, 1601208.

    Article  CAS  Google Scholar 

  12. [12]

    Sun, Y. L.; Yan, X. B. Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL 2017, 1, 1700002.

    Article  CAS  Google Scholar 

  13. [13]

    Du, P. C.; Hu, X. W.; Yi, C.; Liu, H. C.; Liu, P.; Zhang, H. L.; Gong, X. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv. Funct. Mater. 2015, 25, 2420–2427.

    CAS  Article  Google Scholar 

  14. [14]

    He, W. D.; Liang, Z. F.; Ji, K. Y.; Sun, Q. F.; Zhai, T. Y.; Xu, X. J. Hierarchical Ni-Co-S@Ni-W-O core-shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 2018, 11, 1415–1425.

    CAS  Article  Google Scholar 

  15. [15]

    Li, Q.; Li, N.; Liu, Y.; Wang, Y. R.; Zhou, H. S. High-safety and low-cost photoassisted chargeable aqueous sodium-ion batteries with 90% input electric energy savings. Adv. Energy Mater. 2016, 6, 1600632.

    Article  CAS  Google Scholar 

  16. [16]

    Li, N.; Wang, Y. R.; Tang, D. M.; Zhou, H. S. Integrating a photocatalyst into a hybrid lithium-sulfur battery for direct storage of solar energy. Angew. Chem., Int. Ed. 2015, 54, 9271–9274.

    CAS  Article  Google Scholar 

  17. [17]

    Yu, M. Z.; Ren, X. D.; Ma, L.; Wu, Y. Y. Integrating a redoxcoupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 2014, 5, 5111.

    CAS  Article  Google Scholar 

  18. [18]

    Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

    Article  CAS  Google Scholar 

  19. [19]

    Wang, L. L.; Wang, Y. R.; Qiao, Y.; Wu, S. C.; Lu, X. Z.; Zhu, J. J.; Zhang, J. R.; Zhou, H. S. Superior efficient rechargeable lithium-air batteries using a bifunctional biological enzyme catalyst. Energy Environ. Sci. 2020, 13, 144–151.

    Article  Google Scholar 

  20. [20]

    An, C. H.; Wang, Z. F.; Xi, W.; Wang, K.; Liu, X. Z.; Ding, Y. Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J. Mater. Chem. A 2019, 7, 15691–15697.

    CAS  Article  Google Scholar 

  21. [21]

    Liu, Y.; Li, N.; Wu, S. C.; Liao, K. M.; Zhu, K.; Yi, J.; Zhou, H. S. Reducing the charging voltage of a Li-O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 2015, 8, 2664–2667.

    CAS  Article  Google Scholar 

  22. [22]

    Wang, X. F.; Sun, K. M.; Li, K.; Li, X.; Gogotsi, Y. Ti3C2Tx/PEDOT: PSS hybrid materials for room-temperature methanol sensor. Chin. Chem. Lett. 2020, 31, 1018–1021.

    CAS  Article  Google Scholar 

  23. [23]

    Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

    Article  CAS  Google Scholar 

  24. [24]

    Gao, Y. J.; Cao, Y. Y.; Gu, Y. B.; Zhuo, H.; Zhuang, G. L.; Deng, S. W.; Zhong, X.; Wei, Z. Z.; Chen, J. H.; Pan, X. et al. Functionalization Ti3C3 MXene by the adsorption or substitution of single metal atom. Appl. Surf. Sci. 2019, 465, 911–918.

    CAS  Article  Google Scholar 

  25. [25]

    Kumar, H.; Frey, N. C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 2017, 11, 7648–7655.

    CAS  Article  Google Scholar 

  26. [26]

    Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    CAS  Article  Google Scholar 

  27. [27]

    Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

    CAS  Article  Google Scholar 

  28. [28]

    Cheng, S. H.; Weng, T. M.; Lu, M. L.; Tan, W. C.; Chen, J. Y.; Chen, Y. F. All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 2013, 3, 2694.

    Article  Google Scholar 

  29. [29]

    Kim, Y. R.; Jo, Y. E.; Shin, Y. S.; Kang, W. T.; Sung, Y. H.; Won, U. Y.; Lee, Y. H.; Yu, W. J. Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory. Appl. Phys. Lett. 2015, 106, 103105.

    Article  CAS  Google Scholar 

  30. [30]

    Wang, Z.; Cao, L. J.; Ding, Y. M.; Shi, R.; Wang, X. J.; Lu, H.; Liu, Z. D.; Xiu, F.; Liu, J. Q.; Huang, W. One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. RSC Adv. 2017, 7, 21969–21973.

    CAS  Article  Google Scholar 

  31. [31]

    Luo, H.; Dimitrov, S.; Daboczi, M.; Kim, J. S.; Guo, Q.; Fang, Y. X.; Stoeckel, M. A.; Samorì, P.; Fenwick, O.; Jorge Sobrido, A. B. et al. Nitrogen-doped carbon dots/TiO2 nanoparticle composites for photoelectrochemical water oxidation. ACS Appl. Nano Mater. 2020, 3, 3371–3381.

    CAS  Article  Google Scholar 

  32. [32]

    Chen, P.; Wang, F. L.; Chen, Z. F.; Zhang, Q. X.; Su, Y. H.; Shen, L. Z.; Yao, K.; Liu, Y.; Cai, Z. W.; Lv, W. Y. et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Appl. Catal. B Environ. 2017, 204, 250–259.

    CAS  Article  Google Scholar 

  33. [33]

    Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

    CAS  Article  Google Scholar 

  34. [34]

    Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402–12410.

    Article  CAS  Google Scholar 

  35. [35]

    Zhang, J. Z.; Seyedin, S.; Qin, S.; Wang, Z. Y.; Moradi, S.; Yang, F. L.; Lynch, P. A.; Yang, W. R.; Liu, J. Q.; Wang, X. G. et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732.

    Article  CAS  Google Scholar 

  36. [36]

    Zhu, C.; Li, H.; Wang, H. B.; Yao, B. W.; Huang, H.; Liu, Y.; Kang, Z. H. Negatively charged carbon nanodots with bacteria resistance ability for high-performance antibiofilm formation and anticorrosion coating design. Small 2019, 15, 1900007.

    Article  CAS  Google Scholar 

  37. [37]

    Li, Y. M.; Shi, J. J.; Yu, B. C.; Duan, B. W.; Wu, J. H.; Li, H. S.; Li, D. M.; Luo, Y. H.; Wu, H. J.; Meng, Q. B. Exploiting electrical transients to quantify charge loss in solar cells. Joule 2020, 4, 472–489.

    CAS  Article  Google Scholar 

  38. [38]

    Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

    CAS  Article  Google Scholar 

  39. [39]

    Zhao, Y.; Li, C. Y.; Song, F. X.; Li, Y.; Liu, Y.; Zhao, Y. J.; Zhang, X. H.; Zhao, Y.; Kang, Z. H. All-in-one, solid-state, solar-powered electrochemical cell. ACS Appl. Mater. Interfaces 2020, 12, 57182–57189.

    CAS  Article  Google Scholar 

  40. [40]

    Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, Z. Z.; Zhao, Y. J.; Liu, Y.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale 2020, 12, 17925–17930.

    Article  Google Scholar 

  41. [41]

    Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C3 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

    CAS  Article  Google Scholar 

  42. [42]

    Zhu, C.; Zhu, M. M.; Sun, Y.; Zhou, Y. J.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Liu, Y.; Kang, Z. H. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Appl. Catal. B Environ. 2018, 237, 166–174.

    CAS  Article  Google Scholar 

  43. [43]

    Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride (MXene) @polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  CAS  Google Scholar 

  44. [44]

    Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu, Z. Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819.

    Article  CAS  Google Scholar 

  45. [45]

    Li, L.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. Flexible Ti3C2Tx/PEDOT: PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 2019, 48, 1747–1756.

    CAS  Article  Google Scholar 

  46. [46]

    Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

    Article  CAS  Google Scholar 

  47. [47]

    Lu, M.; Zhang, Z. Y.; Kang, L. P.; He, X. X.; Li, Q.; Sun, J.; Jiang, R. B.; Xu, H.; Shi, F.; Lei, Z. B. et al. Intercalation and delamination behavior of and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance. J. Mater. Chem. A 3, 7, 12582–12592.

  48. [48]

    Wang, J. G.; Zhang, Z. Y.; Zhang, X. Y.; Yin, X. M.; Li, X.; Liu, X. R.; Kang, F. Y.; Wei, B. Q. Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017, 39, 647–653.

    Article  CAS  Google Scholar 

  49. [49]

    Wang, J. G.; Liu, H. Z.; Sun, H. H.; Hua, W.; Wang, H. W.; Liu, X. R.; Wei, B. Q. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 2018, 127, 85–92.

    CAS  Article  Google Scholar 

  50. [50]

    Tian, Y. P.; Yang, C. H.; Que, W. X.; Liu, X. B.; Yin, X. T.; Kong, L. B. Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources 2017, 359, 332–339.

    CAS  Article  Google Scholar 

  51. [51]

    Hu, H. B.; Hua, T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 2017, 5, 19639–19648.

    CAS  Article  Google Scholar 

  52. [52]

    Li, J. M.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X. H.; Wang, H. Z.; Alshareef, H. N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461.

    Article  Google Scholar 

Download references


This work is supported by National MCF Energy R&D Program (No. 2018YFE0306105), the National Key Research and Development Project of China (No. 2020YFA0406104), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202), Natural Science Foundation of Jiangsu Province (No. BK20190041), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Author information



Corresponding authors

Correspondence to Yang Liu or Zhenhui Kang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, J., Zhou, Y. et al. Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. (2021).

Download citation


  • photo-assisted charging
  • nitrogen-doped carbon dots
  • supercapacitor
  • energy storage