Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures

Abstract

Ultrathin and flexible electromagnetic shielding materials hold great potential in civil and military applications. Despite tremendous research efforts, the development of advanced shielding materials is still needed to provide additional functionalities for various artificial-intelligence-driven systems, such as tactile sensing ability. Herein, a layering design strategy is proposed to fabricate ultrathin Ti3C2Tx MXene-aramid nanofiber (MA) films by a layer-by-layer assembling process. Compared to that of randomly mixed films, the designed MA films exhibited a higher EMI shielding efficiency at an ultrathin thickness of 9 µm, which increased from 26.4 to 40.7 dB, owing to the additional multiple-interface scattering mechanism. Importantly, the novel MA films displayed strong EMI shielding ability even after heating/cooling treatments within a wide temperature range of −196 to 300 °C. Moreover, the same material displayed a tensile strength of 124.1 ± 2.7 MPa and a toughness of 6.3 ± 1.1 MJ·m−3, which are approximately 9.1 times and 45 times higher than those of pure MXene films, respectively. The MA film is also capable of detecting tactile signals via the triboelectric effect. A 2 × 4 tactile sensor array was developed to achieve an accurate signal catching capability. Therefore, in addition to the shielding performance, the manifestation of tactile perception by the MA films offers exciting opportunities in the fields of soft robotics and human-machine interactions.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Article  CAS  Google Scholar 

  2. [2]

    Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    CAS  Article  Google Scholar 

  3. [3]

    Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

    Article  CAS  Google Scholar 

  4. [4]

    Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D Shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.

    CAS  Google Scholar 

  5. [5]

    Pan, J. L.; Guo, H.; Wang, M.; Yang, H.; Hu, H. W.; Liu, P.; Zhu, H. W. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621–629.

    CAS  Article  Google Scholar 

  6. [6]

    Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. A.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    CAS  Article  Google Scholar 

  7. [7]

    Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268.

    CAS  Article  Google Scholar 

  8. [8]

    Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Xue, X.; Zhang, Z. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 2017, 13, 1701388.

    Article  CAS  Google Scholar 

  9. [9]

    Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

    CAS  Article  Google Scholar 

  10. [10]

    Kashani, H.; Giroux, M.; Johnson, I.; Han, J. H.; Wang, C.; Chen, M. W. Unprecedented electromagnetic interference shielding from three-dimensional bi-continuous nanoporous graphene. Matter 2019, 1, 1077–1087.

    Article  Google Scholar 

  11. [11]

    Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

    CAS  Article  Google Scholar 

  12. [12]

    Abbasi, H.; Antunes, M.; Velasco, J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang, Q. X.; Mao, Z.; Wang, K. X.; Phan, N. T. S.; Zhang, F. Microwave-assisted aqueous carbon-carbon cross-coupling reactions of aryl chlorides catalysed by reduced graphene oxide supported palladium nanoparticles. Green Chem. 2020, 22, 3239–3247.

    CAS  Article  Google Scholar 

  14. [14]

    Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2020, DOI: https://doi.org/10.1007/s12274-020-3133-x.

  15. [15]

    Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

    CAS  Article  Google Scholar 

  16. [16]

    Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Article  CAS  Google Scholar 

  17. [17]

    Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; Xiao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.

    CAS  Article  Google Scholar 

  18. [18]

    Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

    CAS  Article  Google Scholar 

  19. [19]

    Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2020, DOI: https://doi.org/10.1007/s12274-020-3100-6.

  20. [20]

    Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

    CAS  Article  Google Scholar 

  21. [21]

    Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    CAS  Article  Google Scholar 

  22. [22]

    An, H.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.

    Article  CAS  Google Scholar 

  23. [23]

    Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

    Article  Google Scholar 

  24. [24]

    Guo, L. H.; Zhang, Y. M.; Zhang, G.; Wang, Q. H.; Wang, T. M. MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel. Tribol. Int. 2021, 153, 106588.

    CAS  Article  Google Scholar 

  25. [25]

    Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149–4168.

    CAS  Article  Google Scholar 

  26. [26]

    Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    CAS  Article  Google Scholar 

  27. [27]

    Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    CAS  Article  Google Scholar 

  28. [28]

    Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    CAS  Google Scholar 

  29. [29]

    Tian, W. Q.; VahidMohammadi, A.; Reid, M. S.; Wang, Z.; Ouyang, L. Q.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M. M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977.

    Article  Google Scholar 

  30. [30]

    Zhao, X. F.; Vashisth, A.; Prehn, E.; Sun, W. M.; Shah, S. A.; Habib, T.; Chen, Y. X.; Tan, Z. Y.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513–526.

    Article  Google Scholar 

  31. [31]

    Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Liu, R.; Yuan, G. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 2019, 29, 1900326.

    Article  CAS  Google Scholar 

  32. [32]

    Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

    CAS  Article  Google Scholar 

  33. [33]

    Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding Properties. ACS Nano 2018, 12, 4583–4593.

    CAS  Article  Google Scholar 

  34. [34]

    Rahman, M. M.; Puthirath, A. B.; Adumbumkulath, A.; Tsafack, T.; Robatjazi, H.; Barnes, M.; Wang, Z. X.; Kommandur, S.; Susarla, S.; Sajadi, S. M. et al. Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 2019, 29, 1900056.

    Article  CAS  Google Scholar 

  35. [35]

    Lavoine, N.; Bras, J.; Saito, T.; Isogai, A. Improvement of the thermal stability of TEMPO-oxidized cellulose nanofibrils by heat-induced conversion of ionic bonds to amide bonds. Macromol. Rapid Commun. 2016, 37, 1033–1039.

    CAS  Article  Google Scholar 

  36. [36]

    Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    CAS  Article  Google Scholar 

  37. [37]

    Cheng, Z.; Liu, L. J.; Xu, S.; Lu, M.; Wang, X. W. Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci. Rep. 2015, 5, 10718.

    CAS  Article  Google Scholar 

  38. [38]

    Yu, X. G.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479.

    CAS  Article  Google Scholar 

  39. [39]

    Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

    Article  CAS  Google Scholar 

  40. [40]

    Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

    CAS  Article  Google Scholar 

  41. [41]

    Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.

    CAS  Article  Google Scholar 

  42. [42]

    Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

    CAS  Article  Google Scholar 

  43. [43]

    Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, Transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang, Y.; Cheng, W. H.; Tian, W. X.; Lu, J. Y.; Song, L.; Liew, K. M.; Wang, B. B.; Hu, Y. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 2020, 12, 6371–6382.

    CAS  Article  Google Scholar 

  45. [45]

    Zhu, J.; Zhang, H. N.; Kotov, N. A. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. ACS Nano 2013, 7, 4818–4829.

    CAS  Article  Google Scholar 

  46. [46]

    Schulz, R. B.; Plantz, V. C.; Brush, D. R. Shielding theory and practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187–201.

    Article  Google Scholar 

  47. [47]

    Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

    CAS  Article  Google Scholar 

  48. [48]

    Liu, Z. X.; Wang, W. Y.; Tan, J. J.; Liu, J.; Zhu, M. F.; Zhu, B. L.; Zhang, Q. Y. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 7170–7180.

    CAS  Article  Google Scholar 

  49. [49]

    Lyu, J.; Wang, X. Z.; Liu, L. H.; Kim, Y.; Tanyi, E. K.; Chi, H.; Feng, W. C.; Xu, L. Z.; Li, T. H.; Noginov, M. A. et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv. Funct. Mater. 2016, 26, 8435–8445.

    CAS  Article  Google Scholar 

  50. [50]

    Kwon, S. R.; Harris, J.; Zhou, T.; Loufakis, D.; Boyd, J. G.; Lutkenhaus, J. L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682–6690.

    CAS  Article  Google Scholar 

  51. [51]

    Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  CAS  Google Scholar 

  52. [52]

    Wei, H. W.; Wang, M. Q.; Zheng, W. H.; Jiang, Z. X.; Huang, Y. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 2020, 46, 6199–6204.

    CAS  Article  Google Scholar 

  53. [53]

    Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51877132).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xingyi Huang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Wang, S., Zhang, C. et al. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3297-z

Download citation

Keywords

  • MXene
  • aramid nanofiber
  • electromagnetic interference shielding
  • temperature resistant
  • tactile sensor