Skip to main content
Log in

Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contributed to the improved curative effect on infectious microbes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Infectious microbes that spread easily in healthcare facilities remain as the severe threat for the public health, especially among immunocompromised populations. Given the intricate problem of dramatic increase in resistance to common biocides, the development of safe and efficient biocide formulated agents to alleviate drug resistance is highly demanding. In this study, Schiff-base ligands were successfully formed on natural biopolymer of epsilon-poly-L-lysine (ε-PL) decorated aldehyde functionalized mesoporous silica SBA-15 (CHO-SBA-15) for the selective coordination of silver ions, which was affirmed by various physicochemical methods. Besides the identified broad-spectrum antibacterial activities, the as-prepared Schiff-base silver nanocomplex (CHO-SBA-15/ε-PL/Ag, CLA-1) exhibited an improved inhibitory effect on infectious pathogen growth typified by Escherichia coli and Staphylococcus aureus in comparison with two control silver complexes without Schiff-base conjugates, SBA-15/ε-PL/Ag and CHO-SBA-15/Ag, respectively. In addition, CLA-1 remarkably inhibited the growth of Mycobacterium tuberculosis due to the excellent antimicrobial activity of silver species. Significantly, CLA-1 kills Candida albicans cells, inhibits biofilm formation, and eliminates preformed biofilms, with no development of resistance during continuous serial passaging. The antifungal activity is connected to disruption of bacterial cell membranes and increased levels of intracellular reactive oxygen species. In mouse models of multidrug-resistant C. albicans infection, CLA-1 exhibited efficient in vivo fungicidal efficacy superior to two antifungal drugs, amphotericin B and fluconazole. Moreover, CLA-1 treatment induces negligible toxicity against normal tissues with safety. Therefore, this study reveals the pivotal role of the molecular design of Schiff-base silver nanocomplex formation on biopolymer surface-functionalized silica mesopores as a green and efficient nanoplatform to tackle infectious microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO. Global tuberculosis report 2018. WHO: Geneva, 2018.

    Google Scholar 

  2. Mukherjee, K.; Tribedi, P.; Mukhopadhyay, B.; Sil, A. K. Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiol. Lett. 2013, 338, 177–183.

    Article  CAS  Google Scholar 

  3. Gonçalves, B.; Ferreira, C.; Alves, C. T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Grit. Rev. Microbiol. 2016, 42, 905–927.

    Article  CAS  Google Scholar 

  4. Brown, G D.; Denning, D. W.; Gow, N. A. R.; Levitz, S. M.; Netea, M. G.; White, T. C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13.

    Article  CAS  Google Scholar 

  5. Wall, G.; Montelongo-Jauregui, D.; Vidal Bonifacio, B.; Lopez-Ribot, J. L.; Uppuluri, P. Candida albicans biofilm growth and dispersal: Contributions to pathogenesis. Curr. Opin. Microbiol. 2019, 52, 1–6.

    Article  CAS  Google Scholar 

  6. Lohse, M. B.; Gulati, M.; Johnson, A. D.; Nobile, C. J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31.

    Article  CAS  Google Scholar 

  7. Zarnowski, R.; Sanchez, H.; Covelli, A. S.; Dominguez, E.; Jaromin, A.; Bernhardt, J.; Mitchell, K. F.; Heiss, C.; Azadi, P.; Mitchell, A. et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoSBiol. 2018, 16, e2006872.

    Article  CAS  Google Scholar 

  8. Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961.

    Article  CAS  Google Scholar 

  9. Król, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52.

    Article  CAS  Google Scholar 

  10. Arias, L. S.; Pessan, J. P.; Miranda Vieira, A. P.; Toito de Lima, T. M.; Botazzo Delbem, A. C.; Monteiro, D. R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46.

    Article  CAS  Google Scholar 

  11. Arzhakova, O. V.; Dolgova, A. A.; Volynskii, A. L. Mesoporous and nanocomposite fibrous materials based on poly(ethylene terephthalate) fibers with high craze density via environmental crazing: Preparation, structure, and applied properties. ACS Appl. Mater. Interfaces 2019, 11, 18701–18710.

    Article  CAS  Google Scholar 

  12. Wu, J. H.; Li, F. Y.; Hu, X.; Lu, J. X.; Sun, X. L.; Gao, J. Q.; Ling, D. S. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent. Sci. 2019, 5, 1366–1376.

    Article  CAS  Google Scholar 

  13. Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14.

    Article  CAS  Google Scholar 

  14. BurduŞel, A. C.; Gherasim, O.; Grumezescu, A. M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681.

    Article  CAS  Google Scholar 

  15. Song, Y. Y.; Jiang, H. J.; Wang, B. B.; Kong, Y.; Chen, J. Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent. ACS Appl. Mater. Interfaces 2018, 10, 1792–1801.

    Article  CAS  Google Scholar 

  16. Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182–1195.

    Article  CAS  Google Scholar 

  17. Hoang, T. T.; Cao, V. D.; Nguyen, N. Q.; Hoang, D. T.; Ngo, V. C.; Nguyen, D. H. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater. Sci. Eng. C 2019, 99, 631–656.

    Article  CAS  Google Scholar 

  18. Lu, M. M.; Ge, Y. R.; Qiu, J.; Shao, D.; Zhang, Y.; Bai, J.; Zheng, X.; Chang, Z. M.; Wang, Z.; Dong, W. F. et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int. J. Nanomedicine 2018, 13, 7697–7709.

    Article  CAS  Google Scholar 

  19. Liu, J.; Li, S. H.; Fang, Y. S.; Zhu, Z. L. Boosting antibacterial activity with mesoporous silica nanoparticles supported silver nanoclusters. J. Colloid Interface Sci. 2019, 555, 470–479.

    Article  CAS  Google Scholar 

  20. Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 2009, 21, 1684–1689.

    Article  CAS  Google Scholar 

  21. Dai, C. L.; Yuan, Y.; Liu, C. S.; Wei, J.; Hong, H.; Li, X. S.; Pan, X. H. Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 2009, 30, 5364–5375.

    Article  CAS  Google Scholar 

  22. Marinescu, G.; Culita, D. C.; Romanitan, C.; Somacescu, S.; Ene, C. D.; Marinescu, V.; Negreanu, D. G.; Maxim, C.; Popa, M.; Marutescu, L. et al. Novel hybrid materials based on heteroleptic Ru(III) complexes immobilized on sba-15 mesoporous silica as highly potent antimicrobial and cytotoxic agents. Appl. Surf. Sci. 2020, 520, 146379.

    Article  CAS  Google Scholar 

  23. Isaacs, M. A.; Barbero, B.; Durndell, L. J.; Hilton, A. C.; Olivi, L.; Parlett, C. M. A.; Wilson, K.; Lee, A. F. Tunable silver-functionalized porous frameworks for antibacterial applications. Antibiotics 2018, 7, 55.

    Article  CAS  Google Scholar 

  24. Sun, J. M.; Ma, D.; Zhang, H.; Liu, X. M.; Han, X. W.; Bao, X. H.; Weinberg, G.; Pfänder, N.; Su, D. S. Toward monodispersed silver nanoparticles with unusual thermal stability. J. Am. Chem. Soc. 2006, 128, 15756–15764.

    Article  CAS  Google Scholar 

  25. Min, S. H.; Yang, J. H.; Kim, J. Y.; Kwon, Y. U. Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Micropor. Mesopor. Mater. 2010, 128, 19–25.

    Article  CAS  Google Scholar 

  26. Kostova, I.; Saso, L. Advances in research of schiff-base metal complexes as potent antioxidants. Curr. Med. Chem. 2013, 20, 4609–4632.

    Article  CAS  Google Scholar 

  27. Saad, A.; Cabet, E.; Lilienbaum, A.; Hamadi, S.; Abderrabba, M.; Chehimi, M. M. Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. J. Taiwan Inst. Chem. Eng. 2017, 80, 1022–1030.

    Article  CAS  Google Scholar 

  28. Saad, A.; Vard, C.; Abderrabba, M.; Chehimi, M. M. Triazole/triazine-functionalized mesoporous silica as a hybrid material support for palladium nanocatalyst. Langmuir 2017, 33, 7137–7146.

    Article  CAS  Google Scholar 

  29. Saad, A.; Snoussi, Y.; Abderrabba, M.; Chehimi, M. M. Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of methylene blue. RSC Adv. 2016, 6, 57672–57682.

    Article  CAS  Google Scholar 

  30. Saad, A.; Bakas, I.; Piquemal, J. Y.; Nowak, S.; Abderrabba, M.; Chehimi, M. M. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as hg(II) adsorbent. Appl. Surf. Sci. 2016, 367, 181–189.

    Article  CAS  Google Scholar 

  31. Joseph, J.; Rani, G. A. Antioxidant and biochemical activities of mixed ligand complexes. Appl. Biochem. Biotechnol. 2014, 172, 867–890.

    Article  CAS  Google Scholar 

  32. Parveen, S.; Velmurugan, G.; Sinn, E.; Venuvanalingam, P.; Govindarajan, S. Water-soluble cobalt(II) & cobalt(III) complexes supported by new triazine Schiff base ligands: Synthesis, structure and biological evaluation. J. Photochem. Photobiol. B: Biol. 2018, 189, 152–164.

    Article  CAS  Google Scholar 

  33. Cao, Q.; Yang, J.; Zhang, H.; Hao, L.; Yang, G. G.; Ji, L. N.; Mao, Z. W. Traceable in-cell synthesis and cytoplasm-to-nucleus translocation of a zinc Schiff base complex as a simple and economical anticancer strategy. Chem. Commun. 2019, 55, 7852–7855.

    Article  CAS  Google Scholar 

  34. Chow, M. J.; Licona, C.; Wong, D. Y. Q.; Pastorin, G.; Gaiddon, C.; Ang, W. H. Discovery and investigation of anticancer ruthenium-arene Schiff-Base complexes via water-promoted combinatorial three-component assembly. J. Med. Chem. 2014, 57, 6043–6059.

    Article  CAS  Google Scholar 

  35. Low, M. L.; Maigre, L.; Dorlet, P.; Guillot, R.; Pages, J. M.; Crouse, K. A.; Policar, C.; Delsuc, N. Conjugation of a new series of dithiocarbazate Schiff base copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconjugate Chem. 2014, 25, 2269–2284.

    Article  CAS  Google Scholar 

  36. Kareem, A.; Laxmi; Arshad, M.; Nami, S. A. A.; Nishat, N. Herbomineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications. J. Photochem. Photobiol. B: Biol. 2016, 160, 163–171.

    Article  CAS  Google Scholar 

  37. Dai, T. J.; Wang, C. P.; Wang, Y. Q.; Xu, W.; Hu, J. J.; Cheng, Y. Y. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 15163–15173.

    Article  CAS  Google Scholar 

  38. Naz, A.; Arun, S.; Narvi, S. S.; Alam, M. S.; Singh, A.; Bhartiya, P.; Dutta, P. K. Cu(II)-carboxymethyl chitosan-silane Schiff base complex grafted on nano silica: Structural evolution, antibacterial performance and dye degradation ability. Int. J. Biol. Macromol. 2018, 110, 215–226.

    Article  CAS  Google Scholar 

  39. Yoshida, T.; Nagasawa, T. ε-poly-L-lysine: Microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 2003, 62, 21–26.

    Article  CAS  Google Scholar 

  40. Mondragón, L.; Mas, N.; Ferragud, V.; de la Torre, C.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F.; Amorós, P.; Pérez-Payá, E.; Orzáez, M. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with e-poly-L-lysine. Chem. Eur. J. 2014, 20, 5271–5281.

    Article  CAS  Google Scholar 

  41. Richards, S. J.; Isufi, K.; Wilkins, L. E.; Lipecki, J.; Fullam, E.; Gibson, M. I. Multivalent antimicrobial polymer nanoparticles target mycobacteria and Gram-negative bacteria by distinct mechanisms. Biomacromolecules 2018, 19, 256–264.

    Article  CAS  Google Scholar 

  42. Izzo, L.; Matrella, S.; Mella, M.; Benvenuto, G.; Vigliotta, G. Escherichia coli as a model for the description of the antimicrobial mechanism of a cationic polymer surface: Cellular target and bacterial contrast response. ACS Appl. Mater. Interfaces 2019, 11, 15332–15343.

    Article  CAS  Google Scholar 

  43. Zhou, C. C.; Li, P.; Qi, X. B.; Sharif, A. R. M.; Poon, Y. F.; Cao, Y.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011, 32, 2704–2712.

    Article  CAS  Google Scholar 

  44. Wang, R.; Li, Q.; Chi, B.; Wang, X. Q.; Xu, Z.; Xu, Z. Q.; Chen, S.; Xu, H. Enzyme-induced dual-network e-poly-L-lysine-based hydrogels with robust self-healing and antibacterial performance. Chem. Commun. 2017, 53, 4803–4806.

    Article  CAS  Google Scholar 

  45. Velikova, N.; Mas, N.; Miguel-Romero, L.; Polo, L.; Stolte, E.; Zaccaria, E.; Cao, R.; Taverne, N.; Ramón Murguía, J.; Martinez-Manez, R. et al. Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 2017, 13, 569–581.

    Article  CAS  Google Scholar 

  46. Amariei, G.; Kokol, V.; Vivod, V.; Boltes, K.; Letón, P.; Rosal, R. Biocompatible antimicrobial electrospun nanofibers functionalized with e-poly-L-lysine. Int. J. Pharm. 2018, 553, 141–148.

    Article  CAS  Google Scholar 

  47. Ghilini, F.; Rodríguez González, R. C.; Miñán, A. G.; Pissinis, D.; Hernández Creus, A.; Salvarezza, R. C.; Schilardi, P. L. Highly stabilized nanoparticles on poly-L-lysine-coated oxidized metals: A versatile platform with enhanced antimicrobial activity. ACS Appl. Mater. Interfaces 2018, 10, 23657–23666.

    Article  CAS  Google Scholar 

  48. Song, Y. Y.; Zhu, P.; Wu, Y.; Tan, L.; Wei, W.; Liu, S. Q.; Huang, Q.; Chen, J. Epsilon-poly-L-lysine decorated ordered mesoporous silica contributes to the synergistic antifungal effect and enhanced solubility of a lipophilic drug. Mater. Sci. Eng.: C 2019, 99, 231–240.

    Article  CAS  Google Scholar 

  49. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968.

    Article  CAS  Google Scholar 

  50. Yang, F.; Song, Y. Y.; Cai, L.; Zhou, S. J.; Chen, J.; Kong, Y. Enriched Ag nanospecies interspersed nanoporous siliceous antibacterial agent. ChemistrySelect 2018, 3, 10255–10258.

    Article  CAS  Google Scholar 

  51. Song, Y. Y.; Cai, L.; Tian, Z. C.; Wu, Y.; Chen, J. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic effects against drug-resistant cancer cells. ACS Omega 2020, 5, 15083–15094.

    Article  CAS  Google Scholar 

  52. Zhao, C. L.; Hou, P.; Ni, J. H.; Han, P.; Chai, Y. M.; Zhang, X. N. Ag-incorporated FHA coating on pure mg: Degradation and in vitro antibacterial properties. ACS Appl. Mater. Interfaces 2016, 8, 5093–5103.

    Article  CAS  Google Scholar 

  53. Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M. T.; Cook, M. B.; Quenzer, V. K.; Ferguson, R. M. et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate alamar blue assay. J. Clin. Microbiol. 1998, 36, 362–366.

    Article  CAS  Google Scholar 

  54. Xu, J.; Wang, B.; Hu, M. H.; Huo, F. M.; Guo, S. C.; Jing, W.; Nuermberger, E.; Lu, Y. Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob. Agents Chemother. 2017, 61, e00239–17.

    Google Scholar 

  55. Gillum, A. M.; Tsay, E. Y. H.; Kirsch, D. R. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 1984, 198, 179–182.

    Article  CAS  Google Scholar 

  56. Lin, S. M.; Sin, W. L. W.; Koh, J. J.; Lim, F.; Wang, L.; Cao, D. R.; Beuerman, R. W.; Ren, L.; Liu, S. P. Semisynthesis and biological evaluation of xanthone amphiphilics as selective, highly potent antifungal agents to combat fungal resistance. J. Med. Chem. 2017, 60, 10135–10150.

    Article  CAS  Google Scholar 

  57. Yang, M.; Du, K. Y.; Hou, Y. R.; Xie, S.; Dong, Y.; Li, D. R.; Du, Y. H. Synergistic antifungal effect of amphotericin b-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms. Antimicrob. Agents Chemother. 2019, 63, e02022–18.

    CAS  Google Scholar 

  58. Rodrigues, C. E.; Alves, D. E.; Henriques, M. Combination of posaconazole and amphotericin B in the treatment of Candida glabrata biofilms. Microorganisms 2018, 6, 123.

    Article  CAS  Google Scholar 

  59. Ramage, G.; vande Walle, K.; Wickes, B. L.; López-Ribot, J. L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 2001, 45, 2475–2479.

    Article  CAS  Google Scholar 

  60. Prasad, T.; Hameed, S.; Manoharlal, R.; Biswas, S.; Mukhopadhyay, C. K.; Goswami, S. K.; Prasad, R. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res. 2010, 10, 587–596.

    CAS  Google Scholar 

  61. Solis, N. V.; Filler, S. G. Mouse model of oropharyngeal candidiasis. Nat. Protoc. 2012, 7, 637–642.

    Article  CAS  Google Scholar 

  62. Muñoz, J. E.; Rossi, D. C. P.; Ishida, K.; Spadari, C. C.; Melhem, M. S. C.; Garcia, D. M.; Caires, A. C. F.; Taborda, C. P.; Rodrigues, E. G Antifungal activity of the biphosphinic cyclopalladate C7a against Candida albicans yeast forms in vitro and in vivo. Front. Microbiol. 2017, 8, 771.

    Article  Google Scholar 

  63. Rajabi, F.; Pinilla-de Dios, M.; Luque, R. Highly ordered nanomaterial functionalized copper Schiff base framework: Synthesis, characterization, and hydrogen peroxide decomposition performance. Catalysts 2017, 7, 216.

    Article  CAS  Google Scholar 

  64. Xu, P. C.; Yu, H. T.; Li, X. X. Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors. Anal. Chem. 2011, 83, 3448–3454.

    Article  CAS  Google Scholar 

  65. Zhang, M.; Zhang, Y.; Helleur, R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea-glutaraldehyde. Chem. Eng. J. 2015, 264, 56–65.

    Article  CAS  Google Scholar 

  66. Xie, X. Z.; Mao, C. Y.; Liu, X. M.; Zhang, Y. Z.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Chu, P. K.; Wu, S. L. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl. Mater. Interfaces 2017, 9, 26417–26428.

    Article  CAS  Google Scholar 

  67. Wu, Z. G.; Zhou, W.; Deng, W. J.; Xu, C. L.; Cai, Y.; Wang, X. Y. Antibacterial and hemostatic thiol-modified chitosan-immobilized AgNPs composite sponges. ACS Appl. Mater. Interfaces 2020, 12, 20307–20320.

    Article  CAS  Google Scholar 

  68. Yang, F.; Wang, B. B.; Su, H.; Zhou, S. J.; Kong, Y. Facilely self-reduced generation of Ag nanowires in the confined reductive siliceous nanopores and its catalytic reduction property. J. Alloys Compd. 2017, 719, 30–41.

    Article  CAS  Google Scholar 

  69. Chong, A. S. M.; Zhao, X. S. Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem. B 2003, 107, 12650–12657.

    Article  CAS  Google Scholar 

  70. Mondal, J.; Sreejith, S.; Borah, P.; Zhao, Y. L. One-pot synthesis of antitumor agent PMX 610 by a copper(II)-incorporated mesoporous catalyst. ACS Sustainable Chem. Eng. 2014, 2, 934–941.

    Article  CAS  Google Scholar 

  71. Zhang, W. B.; Shi, T. Y.; Ding, G. L.; Punyapitak, D.; Zhu, J. L.; Guo, D.; Zhang, Z. P.; Li, J. Q.; Cao, Y. S. Nanosilica Schiff-base copper(II) complexes with sustainable antimicrobial activity against bacteria and reduced risk of harm to plant and environment. ACS Sustainable Chem. Eng. 2017, 5, 502–509.

    Article  CAS  Google Scholar 

  72. Li, H. N.; Liu, C. B.; Dai, B.; Tang, X. H.; Zhang, Z. J.; Xiong, Z. Q.; Liu, X. M. Synthesis, conductivity, and electromagnetic wave absorption properties of chiral poly Schiff bases and their silver complexes. J. Appl. Polym. Sci. 2015, 132, 42498.

    Google Scholar 

  73. Adur, A. J.; Nandini, N.; Shilpashree, M. K.; Ramya, R.; Srinatha, N. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B: Biol. 2018, 183, 30–34.

    Article  CAS  Google Scholar 

  74. Narani, A.; Marella, R. K.; Ramudu, P.; Rao, K. S. R.; Burri, D. R. Cu(II) complex heterogenized on SBA-15: A highly efficient and additive-free solid catalyst for the homocoupling of alkynes. RSC Adv. 2014, 4, 3774–3781.

    Article  CAS  Google Scholar 

  75. Parambadath, S.; Mathew, A.; Barnabas, M. J.; Kim, S. Y.; Ha, C. S. Concentration-dependant selective removal of Cr(III), Pb(II) and Zn(II) from aqueous mixtures using 5-methyl-2-thiophenecarboxaldehyde Schiff base-immobilised SBA-15. J. Sol-Gel Sci. Technol. 2016, 79, 426–439.

    Article  CAS  Google Scholar 

  76. Roux, S.; Garcia, B.; Bridot, J. L.; Salomé, M.; Marquette, C.; Lemelle, L.; Gillet, P.; Blum, L.; Perriat, P.; Tillement, O. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir 2005, 21, 2526–2536.

    Article  CAS  Google Scholar 

  77. Tao, Y. H.; Chen, X. Y.; Jia, F.; Wang, S. X.; Xiao, C. S.; Cui, F. C.; Li, Y. Q.; Bian, Z.; Chen, X. S.; Wang, X. H. New chemosynthetic route to linear e-poly-lysine. Chem. Sci. 2015, 6, 6385–6391.

    Article  CAS  Google Scholar 

  78. Cecilia Mesa-Arango, A.; Trevijano-Contador, N.; Román, E.; Sánchez-Fresneda, R.; Casas, C.; Herrero, E.; Carlos Argüeelles, J.; Pla, J.; Cuenca-Estrella, M.; Zaragoza, O. The production of reactive oxygen species is a universal action mechanism of amphotericin b against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob. Agents Chemother. 2014, 58, 6627–6638.

    Article  CAS  Google Scholar 

  79. Belenky, P.; Camacho, D.; Collins, J. J. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 2013, 3, 350–358.

    Article  CAS  Google Scholar 

  80. Hwang, I. S.; Lee, J.; Hwang, J. H.; Kim, K. J.; Lee, D. G. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012, 279, 1327–1338.

    Article  CAS  Google Scholar 

  81. Purkait, B.; Singh, R.; Wasnik, K.; Das, S.; Kumar, A.; Paine, M.; Dikhit, M.; Singh, D.; Sardar, A. H.; Ghosh, A. K. et al. Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin b resistance in clinical isolates of Leishmania donovani. J. Antimicrob. Chemother. 2015, 70, 1343–1356.

    Article  CAS  Google Scholar 

  82. Guirao-Abad, J. P.; Sánchez-Fresneda, R.; Alburquerque, B.; Hernández, J. A.; Argüelles, J. C. ROS formation is a differential contributory factor to the fungicidal action of amphotericin B and micafungin in Candida albicans. Int. J. Med. Microbiol. 2017, 307, 241–248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programs of China (No. 2018YFC0311003 to H. B.), the National Natural Science Foundation of China (No. U1703118 to J. C.), the Natural Science Foundation of Jiangsu Province (No. BK20181364 to J. C.), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, to J. C.), the Cooperative Project between Southeast University and Nanjing Medical University (No. 2018DN0004 to J. C.), the National Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA310002 to H. B., No. 19KJA310003 to J. C.), the Jiangsu Specially Appointed Professor and Jiangsu Medical Specialist Programs of China (to H. B.), and Jiangsu Province “Innovative and Entrepreneurial Team” Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongkai Bi or Jin Chen.

Electronic supplementary material

12274_2020_3279_MOESM1_ESM.pdf

Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contributed to the improved curative effect on infectious microbes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Huang, Y., Duan, Y. et al. Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contributed to the improved curative effect on infectious microbes. Nano Res. 14, 2735–2748 (2021). https://doi.org/10.1007/s12274-020-3279-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3279-6

Keywords

Navigation