Design of flexible inorganic thermoelectric devices for decrease of heat loss

Abstract

Thermoelectric (TE) devices can realize the conversion of heat energy and electrical power based on Seebeck effect and Peltier effect. Among them, flexible TE devices have received more attention recently due to their better attachment to various heat sources and aimed components with arbitrary shapes. To improve the performance of flexible TE devices for various application scenarios, large efforts have been made to design the leg patterns, the electrical and thermal contact issues, and the substrate and encapsulation materials for the decrease of heat loss. This paper is to review the advancements about the design of flexible inorganic TE devices over the last decade. Firstly, the design of flexible thin-film TE devices based on the direction of temperature gradient, including the patterns of TE legs, the fabrication methods, and the flexible substrate materials is summarized. Secondly, the design of wearable TE devices that contains common architecture of the module, the substrates and encapsulations, the electrical and thermal contact, and some thin-film based wearable devices with curving TE legs is demonstrated. Thirdly, the characterizations of the flexibility of TE devices and the current applications are outlined. Moreover, some views about the future development for TE devices are proposed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Zhang, L. S.; Lin, S. P.; Hua, T.; Huang, B. L.; Liu, S. R.; Tao, X. M. Fiber-based thermoelectric generators: Materials, device structures, fabrication, characterization, and applications. Adv. Energy Mater. 2017, 8, 1700524.

    Article  CAS  Google Scholar 

  2. [2]

    He, W.; Zhang, G.; Zhang, X. X.; Ji, J.; Li, G. Q.; Zhao, X. D. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25.

    Article  Google Scholar 

  3. [3]

    Riffat, S. B.; Ma, X. L. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935.

    Article  Google Scholar 

  4. [4]

    Dai, D.; Zhou, Y. X.; Liu, J. Liquid metal based thermoelectric generation system for waste heat recovery. Renew. Energy 2011, 36, 3530–3536.

    CAS  Article  Google Scholar 

  5. [5]

    Tao, X. M. Handbook of Smart Textiles; Springer: Singapore, 2015; pp 287–289.

    Google Scholar 

  6. [6]

    Karthikeyan, V.; Surjadi, J. U.; Wong, J. C. K.; Kannan, V.; Lam, K. H.; Chen, X. F.; Lu, Y.; Roy, V. A. L. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. J. Power. Sources 2020, 455, 227983.

    CAS  Article  Google Scholar 

  7. [7]

    Harman, T. C.; Walsh, M. P.; Laforge, B. E.; Turner, G. W. Nanostructured thermoelectric materials. J. Electron. Mater. 2005, 34, L19–L22.

    CAS  Article  Google Scholar 

  8. [8]

    Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85.

    CAS  Article  Google Scholar 

  9. [9]

    Amatya, R.; Ram, R. J. Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 2012, 41, 1011–1019.

    CAS  Article  Google Scholar 

  10. [10]

    Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98–105.

    CAS  Article  Google Scholar 

  11. [11]

    Scholdt, M.; Do, H.; Lang, J.; Gall, A.; Colsmann, A.; Lemmer, U.; Koenig, J. D.; Winkler, M.; Boettner, H. Organic semiconductors for thermoelectric applications. J. Electron. Mater. 2010, 39, 1589–1592.

    CAS  Article  Google Scholar 

  12. [12]

    Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723.

    CAS  Article  Google Scholar 

  13. [13]

    Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S., Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433.

    CAS  Article  Google Scholar 

  14. [14]

    Liang, L. X.; Deng, Y.; Wang, Y.; Gao, H. L.; Cui, J. L. Scalable solution assembly of nanosheets into high-performance flexible Bi0.5Sb1.5Te3 thin films for thermoelectric energy conversion. J. Nanopart. Res. 2014, 16, 2575.

    Article  CAS  Google Scholar 

  15. [15]

    Cao, Z.; Koukharenko, E.; Torah, R. N.; Tudor, J.; Beeby, S. P. Flexible screen printed thick film thermoelectric generator with reduced material resistivity. J. Phys. Conf. Ser. 2014, 557, 012016.

    Article  Google Scholar 

  16. [16]

    Kim, S. J.; Lee, H. E.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, K. J.; Cho, B. J. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 2016, 10, 10851–10857.

    CAS  Article  Google Scholar 

  17. [17]

    Wang, Y. C.; Guo, X. T.; Shi, Y. G.; Mei, D. Q. Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. J. Micromech. Microeng. 2019, 29, 045002.

    CAS  Article  Google Scholar 

  18. [18]

    Shi, X. L.; Zheng, K.; Hong, M.; Liu, W. D.; Moshwan, R.; Wang, Y.; Qu, X. L.; Chen, Z. G.; Zou, J. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 2018, 9, 7376–7389.

    CAS  Article  Google Scholar 

  19. [19]

    Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) (PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.

    CAS  Article  Google Scholar 

  20. [20]

    Varghese, T.; Hollar, C.; Richardson, J.; Kempf, N.; Han, C.; Gamarachchi, P.; Estrada, D.; Mehta, R. J.; Zhang, Y. L. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep. 2016, 6, 33135.

    CAS  Article  Google Scholar 

  21. [21]

    Li, S. H.; Toprak, M. S.; Soliman H. M. A.; Zhou, J.; Muhammed, M.; Platzek, D.; Müller, E. Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chem. Mater. 2006, 18, 3627–3633.

    CAS  Article  Google Scholar 

  22. [22]

    Wang, Y.; Lei, Y.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916.

    Article  CAS  Google Scholar 

  23. [23]

    Yang, J. H.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229.

    CAS  Article  Google Scholar 

  24. [24]

    Chen, Z. G.; Han, G.; Yang, L.; Cheng, L. N.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci.: Mater. Int. 2012, 22, 535–549.

    Article  Google Scholar 

  25. [25]

    Yang, Y.; Lin, Z. H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888–895.

    CAS  Article  Google Scholar 

  26. [26]

    Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

    CAS  Article  Google Scholar 

  27. [27]

    Du, Y.; Xu, J. Y.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388.

    Article  Google Scholar 

  28. [28]

    An, H.; Karas, D.; Kim, B. W.; Trabia, S.; Moon, J. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment. Nanotechnology 2018, 29, 275403.

    Article  CAS  Google Scholar 

  29. [29]

    Zeng, X. L.; Yan, C. Z.; Ren, L. L.; Zhang, T.; Zhou, F. R.; Liang, X. W.; Wang, N.; Sun, R.; Xu, J. B.; Wong, C. P. Silver telluride nanowire assembly for high-performance flexible thermoelectric film and its application in self-powered temperature sensor. Adv. Electron. Mater. 2019, 5, 1800612.

    Article  CAS  Google Scholar 

  30. [30]

    Chung, D. Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M. G. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 2000, 287, 1024–1027.

    CAS  Article  Google Scholar 

  31. [31]

    Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    CAS  Article  Google Scholar 

  32. [32]

    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    CAS  Article  Google Scholar 

  33. [33]

    Yue, R. R.; Xu, J. K. Poly(3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synth. Met. 2012, 162, 912–917.

    CAS  Article  Google Scholar 

  34. [34]

    Zhang, Q.; Sun, Y. M.; Xu, W.; Zhu, D. B. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 2014, 26, 6829–6851.

    CAS  Article  Google Scholar 

  35. [35]

    Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345–9362.

    CAS  Article  Google Scholar 

  36. [36]

    Dong, X. Y.; Xiong, S. X.; Luo, B. W.; Ge, R.; Li, Z. F.; Li, J.; Zhou, Y. H. Flexible and transparent organic-inorganic hybrid thermoelectric modules. ACS Appl. Mater. Interfaces 2018, 10, 26687–26693.

    CAS  Article  Google Scholar 

  37. [37]

    Jin, H. L.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P. C.; Yang, C.; Li, N.; Liu, Z. P.; He, J. H.; Zhu, T. J. et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed. 2019, 58, 15206–15226.

    CAS  Article  Google Scholar 

  38. [38]

    We, J. H.; Kim, S. J.; Cho, B. J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 2014, 73, 506–512.

    CAS  Article  Google Scholar 

  39. [39]

    Min, Y. H.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 Nanoflakes and enhanced thermoelectric properties of their Nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    CAS  Article  Google Scholar 

  40. [40]

    Zhao, W. Y.; Fan, S. F.; Xiao, N.; Liu, D. Y.; Tay, Y. Y.; Yu, C.; Sim, D.; Hng, H. H.; Zhang, Q. C.; Boey, F. et al. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 2012, 5, 5364–5369.

    CAS  Article  Google Scholar 

  41. [41]

    Choi, J.; Lee, J. Y.; Lee, H.; Park, C. R.; Kim, H. Enhanced thermoelectric properties of the flexible tellurium nanowire film hybridized with single-walled carbon nanotube. Synth. Met. 2014, 198, 340–344.

    CAS  Article  Google Scholar 

  42. [42]

    de Boor, J.; Gloanec, C.; Kolb, H.; Sottong, R.; Ziolkowski, P.; Müller, E. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators. J. Alloys Compd. 2015, 632, 348–353.

    CAS  Article  Google Scholar 

  43. [43]

    Kessler, V.; Dehnen, M.; Chavez, R.; Engenhorst, M.; Stoetzel, J.; Petermann, N.; Hesse, K.; Huelser, T.; Spree, M.; Stiewe, C. et al. Fabrication of high-temperature-stable thermoelectric generator modules based on Nanocrystalline silicon. J. Electron. Mater. 2014, 43, 1389–1396.

    CAS  Article  Google Scholar 

  44. [44]

    Sahin, A. Z.; Yilbas, B. S. The influence of operating and device parameters on the maximum efficiency and the maximum output power of thermoelectric generator. Int. J. Energy Res. 2012, 36, 111–119.

    Article  Google Scholar 

  45. [45]

    Twaha, S.; Zhu, J.; Yan, Y. Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sust. Energy Rev. 2016, 65, 698–726.

    CAS  Article  Google Scholar 

  46. [46]

    Ding, D. F.; Sun, F. M.; Xia, F.; Tang, Z. Y. A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Adv. 2020, 2, 3244–3251.

    CAS  Article  Google Scholar 

  47. [47]

    Du, Y.; Cai, K. F.; Shen, S. Z.; Donelsonand, R.; Xu, J. Y.; Wang, H. X.; Lin, T. Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer. RSC Adv. 2017, 7, 43737–43742.

    CAS  Article  Google Scholar 

  48. [48]

    Liu, K.; Tang, X. B.; Liu, Y. P.; Yuan, Z. C.; Li, J. Q.; Xu, Z. H.; Zhang, Z. R.; Chen, W. High-performance and integrated design of thermoelectric generator based on concentric filament architecture. J. Power Sources 2018, 393, 161–168.

    CAS  Article  Google Scholar 

  49. [49]

    Siddique, A. R. M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sust. Energy Rev. 2017, 73, 730–744.

    Article  Google Scholar 

  50. [50]

    Orrill, M.; LeBlanc, S. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. J. Appl. Polym. Sci. 2017, 134, 44256–44271.

    Article  CAS  Google Scholar 

  51. [51]

    He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.

    Article  CAS  Google Scholar 

  52. [52]

    Li, C. C.; Drymiotis, F.; Liao, L. L.; Hung, H. T.; Ke, J. H.; Liu, C. K.; Kao, C. R.; Snyder, G. J. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C 2015, 3, 10590–10596.

    CAS  Article  Google Scholar 

  53. [53]

    Li, C. C.; Jiang, F. X.; Liu, C. C.; Liu, P. P.; Xu, J. K. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 2019, 15, 543–557.

    Article  Google Scholar 

  54. [54]

    Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M. H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F. M.; Mohaddes, F. et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069.

    Article  Google Scholar 

  55. [55]

    Yamamuro, H.; Hatsuta, N.; Wachi, M.; Takei, Y.; Takashiri, M. Combination of electrodeposition and transfer processes for flexible thin-film thermoelectric generators. Coatings 2018, 8, 22.

    Article  CAS  Google Scholar 

  56. [56]

    Lu, Z. Y.; Layani, M.; Zhao, X. X.; Tan, L. P.; Sun, T.; Fan, S. F.; Yan, Q. Y.; Magdassi, S.; Hng, H. H. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 2014, 10, 3551–3554.

    CAS  Article  Google Scholar 

  57. [57]

    Cao, Z.; Tudor, M. J.; Torah, R. N.; Beeby, S. P. Screen printable flexible BiTe-SbTe-based composite thermoelectric materials on textiles for wearable applications. IEEE Trans. Electron Dev. 2016, 63, 4024–4030.

    CAS  Article  Google Scholar 

  58. [58]

    Ou, C. L.; Sangle, A. L.; Datta, A.; Jing, Q. S.; Busolo, T.; Chalklen, T.; Narayan, V.; Kar-Narayan, S. Fully printed organic-inorganic nanocomposites for flexible thermoelectric applications. ACS Appl. Mater. Interfaces 2018, 10, 19580–19587.

    CAS  Article  Google Scholar 

  59. [59]

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.; Perrone, A. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 2011, 196, 3239–3243.

    CAS  Article  Google Scholar 

  60. [60]

    Jung, Y. S.; Jeong, D. H.; Kang, S. B.; Kim, F.; Jeong, M. H.; Lee, K. S.; Son, J. S.; Baik, J. M.; Kim, J. S., Choi, K. J. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017, 40, 663–672.

    CAS  Article  Google Scholar 

  61. [61]

    Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

    Article  CAS  Google Scholar 

  62. [62]

    Park, S. H.; Jo, S.; Kwon, B.; Kim, F.; Ban, H. W.; Lee, J. E.; Gu, D. H.; Lee, S. H.; Hwang, Y.; Kim, J. S. et al. High-performance shape-engineerable thermoelectric painting. Nat. Commun. 2016, 7, 13403.

    CAS  Article  Google Scholar 

  63. [63]

    Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; Völklein, F.; Doll, T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensor. Actuat. A Phys. 2006, 132, 325–330.

    CAS  Article  Google Scholar 

  64. [64]

    Kim, S. L.; Choi, K.; Tazebay, A.; Yu, C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS. Nano 2014, 8, 2377–2386.

    CAS  Article  Google Scholar 

  65. [65]

    Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy 2019, 176, 853–860.

    CAS  Article  Google Scholar 

  66. [66]

    Chen, A.; Madan, D.; Wright, P. K.; Evans, J. W. Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 2011, 21, 104006.

    Article  CAS  Google Scholar 

  67. [67]

    Navone, C.; Soulier, M.; Plissonnier, M.; Seiler A. L. Development of (Bi, Sb)2(Te, Se)3-based thermoelectric modules by a screen-printing process. J. Electron. Mater. 2010, 39, 1755–1759.

    CAS  Article  Google Scholar 

  68. [68]

    Lee, H. B.; We, J. H.; Yang, H. J.; Kim, K.; Choi, K. C.; Cho, B. J. Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films 2011, 519, 5441–5443.

    CAS  Article  Google Scholar 

  69. [69]

    Nuthongkum, P.; Sakulkalavek, A.; Sakdanuphab, R. RSM base study of the effect of argon gas flow rate and annealing temperature on the [Bi]: [Te] ratio and thermoelectric properties of flexible Bi-Te thin film. J. Electron. Mater. 2017, 46, 2900–2907.

    CAS  Article  Google Scholar 

  70. [70]

    Fan, P.; Fan, W. F.; Zheng, Z. H.; Zhang, Y.; Luo, J. T.; Liang, G. X.; Zhang, D. P. Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering. J. Mater. Sci. 2014, 25, 5060–5065.

    CAS  Google Scholar 

  71. [71]

    Shi, X.; Chen, H. Y.; Hao, F.; Liu, R. H.; Wang, T.; Qiu, P. F.; Burkhardt, U.; Grin, Y.; Chen, L. D. Room-temperature ductile inorganic semiconductor. Nat. Mater. 2018, 17, 421–426.

    CAS  Article  Google Scholar 

  72. [72]

    Madan, D.; Wang, Z. Q.; Chen, A.; Juang, R. C.; Keist, J.; Wright, P. K.; Evans, J. W. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl. Mater. Interfaces 2012, 4, 6117–6124.

    CAS  Article  Google Scholar 

  73. [73]

    Hou, W. K.; Nie, X. L.; Zhao, W. Y.; Zhou, H. Y.; Mu, X.; Zhu, W. T.; Zhang, Q. J. Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 2018, 50, 766–776.

    CAS  Article  Google Scholar 

  74. [74]

    Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S. H.; Hu, G. H.; Albrow-Owen, T.; Ng, L. W. T.; Howe, R. C. T.; Hasan, T.; Sun, Z. P. et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480.

    Article  CAS  Google Scholar 

  75. [75]

    Du, Y.; Cai, K. F.; Chen, S.; Wang, H. X.; Shen, S. Z.; Donelson, R.; Lin, T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015, 5, 6411.

    CAS  Article  Google Scholar 

  76. [76]

    Jiao, F.; Di, C. A.; Sun, Y. M.; Sheng, P.; Xu, W.; Zhu, D. B. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philos. Trans. Roy. Soc. A 2014, 372, 20130008.

    Article  CAS  Google Scholar 

  77. [77]

    Jin, Q.; Shi, W. B.; Zhao, Y.; Qiao, J. X.; Qiu, J. H.; Sun, C.; Lei, H.; Tai, K. P.; Jiang, X. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl. Mater. Interfaces 2018, 10, 1743–1751.

    CAS  Article  Google Scholar 

  78. [78]

    Yuan, Z. C.; Tang, X. B.; Xu, Z. H.; Li, J. Q.; Chen, W.; Liu, K.; Liu, Y. P.; Zhang, Z. R. Screen-printed radial structure micro radioisotope thermoelectric generator. Appl. Energy 2018, 225, 746–754.

    CAS  Article  Google Scholar 

  79. [79]

    Li, J. Q.; Tang, X. B.; Liu, Y. P.; Yuan, Z. C.; Xu, Z. H.; Liu, K. Fan-shaped flexible radioisotope thermoelectric generators based on BixTey and BixSb2−xTey fabricated through electrochemical deposition. Energy Technol. 2019, 7, 1800707.

    Article  CAS  Google Scholar 

  80. [80]

    Xu, Z. H.; Li, J. Q.; Tang, X. B.; Liu, Y. P.; Jiang, T. X.; Yuan, Z. C.; Liu, K. Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator. Energy 2020, 194, 116873.

    CAS  Article  Google Scholar 

  81. [81]

    Kim, M. K.; Kim, M. S.; Jo, S. E.; Kim, H. L.; Lee, S. M.; Kim, Y. J. Wearable thermoelectric generator for human clothing applications. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, 2013, pp 1376–1379.

  82. [82]

    Mu, E. Z.; Yang, G.; Fu, X. C.; Wang, F. D.; Hu, Z. Y. Fabrication and characterization of ultrathin thermoelectric device for energy conversion. J. Power Sources 2018, 394, 17–25.

    CAS  Article  Google Scholar 

  83. [83]

    Rojas, J. P.; Conchouso, D.; Arevalo, A.; Singh, D.; Foulds, I. G.; Hussain, M. M. Paper-based origami flexible and foldable thermoelectric nanogenerator. Nano Energy 2017, 31, 296–301.

    CAS  Article  Google Scholar 

  84. [84]

    Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745.

    Article  Google Scholar 

  85. [85]

    Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518–524.

    Article  Google Scholar 

  86. [86]

    Myers, A.; Hodges, R.; Jur, J. S. Human and environmental analysis of wearable thermal energy harvesting. Energy Convers. Manage. 2017, 143, 218–226.

    Article  Google Scholar 

  87. [87]

    Zhao, X.; Han, W. J.; Zhao, C. S.; Wang, S.; Kong, F. G.; Ji, X. X.; Li, Z. Y.; Shen, X. A. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 2019, 11, 10301–10309.

    CAS  Article  Google Scholar 

  88. [88]

    Lu, Z. S.; Zhang, H. H.; Mao, C. P.; Li, C. M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63.

    CAS  Article  Google Scholar 

  89. [89]

    Kim, M. K.; Kim, M. S.; Lee, S.; Kim, C.; Kim, Y. J. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 2014, 23, 105002.

    Article  CAS  Google Scholar 

  90. [90]

    Siddique, A. R. M.; Rabari, R.; Mahmud, S.; van Heyst, B. Thermal energy harvesting from the human body using Flexible Thermoelectric Generator (FTEG) fabricated by a dispenser printing technique. Energy 2016, 115, 1081–1091.

    CAS  Article  Google Scholar 

  91. [91]

    Kim, S. J.; We, J. H.; Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959–1965.

    CAS  Article  Google Scholar 

  92. [92]

    Wang, Y. C.; Shi, Y. G.; Mei, D. Q.; Chen, Z. C. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690–698.

    CAS  Article  Google Scholar 

  93. [93]

    Shi, Y. G.; Wang, Y. C.; Mei, D. Q.; Feng, B.; Chen, Z. C. Design and fabrication of wearable thermoelectric generator device for heat harvesting. IEEE Robot. Autom. Lett. 2018, 3, 373–378.

    Article  Google Scholar 

  94. [94]

    Liu, H. Y.; Wang, Y. C.; Mei, D. Q.; Shi, Y. G.; Chen, Z. C. Design of a Wearable thermoelectric generator for harvesting human body energy. In Wearable Sensors and Robots. Yang, C. J.; Virk, G. S.; Yang H. Y., Eds.; Springer, Singapore, 2017; pp 55–56.

    Google Scholar 

  95. [95]

    Shi, Y. G.; Wang, Y. C.; Mei, D. Q.; Chen, Z. C. Wearable thermoelectric generator with copper foam as the heat sink for body heat harvesting. IEEE Access 2018, 6, 43602–43611.

    Article  Google Scholar 

  96. [96]

    Nan, K. W.; Kang, S. D.; Li, K.; Yu, K. J.; Zhu, F.; Wang, J. T.; Dunn, A. C.; Zhou, C. Q.; Xie, Z. Q.; Agne, M. T. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 2018, 4: eaau5849.

    CAS  Article  Google Scholar 

  97. [97]

    Xu, X. J.; Zuo, Y.; Cai, S.; Tao, X.; Zhang, Z. M.; Zhou, X. F.; He, S. S.; Fang, X. S.; Peng, H. S. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. J. Mater. Chem. C 2018, 6, 4866–4872.

    CAS  Article  Google Scholar 

  98. [98]

    Francioso, L.; De Pascali, C.; Taurino, A.; Siciliano, P.; De Risi, A. Wearable and flexible thermoelectric generator with enhanced package. In Proceedings of the SPIE 8763, Smart Sensors, Actuators, and MEMS VI, Grenoble, 2013, pp 876306.

  99. [99]

    Sevilla, G. A. T.; Inayat, S. B.; Rojas, J. P.; Hussain, A. M.; Hussain, M. M. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). Small 2013, 9, 3916–3921.

    CAS  Article  Google Scholar 

  100. [100]

    Zeng, W.; Tao, X. M.; Lin, S. P.; Lee, C.; Shi, D. L.; Lam, K. H.; Huang, B. L.; Wang, Q. M.; Zhao, Y. Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators. Nano Energy 2018, 54, 163–174.

    CAS  Article  Google Scholar 

  101. [101]

    Dargusch, M.; Liu, W. D.; Chen, Z. G. Thermoelectric generators: Alternative power supply for wearable electrocardiographic systems. Adv. Sci. 2020, 18, 2001362.

    Article  Google Scholar 

  102. [102]

    He, M. H.; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y. N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595.

    CAS  Article  Google Scholar 

  103. [103]

    Eom, Y.; Wijethunge, D.; Park, H.; Park, S. H.; Kim, W. Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Appl. Energy 2017, 206, 649–656.

    CAS  Article  Google Scholar 

  104. [104]

    Chen, B. L.; Kruse, M.; Xu, B.; Tutika, R.; Zheng, W.; Bartlett, M. D.; Wu, Y.; Claussen, J. C. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 2019, 11, 5222–5230.

    CAS  Article  Google Scholar 

  105. [105]

    Kato, K.; Hatasako, Y.; Kashiwagi, M.; Hagino, H.; Adachi, C.; Miyazaki, K. Fabrication of a flexible bismuth telluride power generation module using microporous polyimide films as substrates. J. Electron. Mater. 2014, 43, 1733–1739.

    CAS  Article  Google Scholar 

  106. [106]

    Kim, S. J.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, H. E.; Oh, M. W.; Lee, K. J.; Cho, B. J. Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017, 31, 258–263.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Basic Research Program of China (No. 2015CB932600), the National Key R&D Program of China (No. 2017YFA0208000), the National Natural Science Foundation of China (Nos. 21525523, 21802130, 21874121, 21722507 and 21574048), the National Key Basic Research Program of China (Nos. 2014CB931801 and 2016YFA0200700, Z.Y.T.), National Natural Science Foundation of China (Nos. 21475029 and 91427302, Z.Y.T.), Frontier Science Key Project of the Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z.Y.T.), Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201311, Z.Y.T.), CAS-CSIRO Cooperative Research Program (No. GJHZ1503, Z.Y.T.), “Strategic Priority Research Program” of Chinese Academy of Sciences (No. XDA09040100, Z.Y.T.) and K. C. Wong Education Foundation, and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG170669).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fan Xia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Sun, F., Xia, F. et al. Design of flexible inorganic thermoelectric devices for decrease of heat loss. Nano Res. (2021). https://doi.org/10.1007/s12274-020-3195-9

Download citation

Keywords

  • flexible
  • wearable
  • thermoelectric device
  • pattern
  • contact