Bioengineering of nano metal-organic frameworks for cancer immunotherapy

Abstract

Immunotherapy techniques, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell therapies and cancer vaccines, have been burgeoning with great success, particularly for specific cancer types. However, side effects with fatal risks, dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy. Nano metal-organic frameworks (nMOFs), with an accurate structure and a narrow size distribution, are emerging as a solution to these problems. In addition to their function of temporospatial delivery, a large library of their compositions, together with flexibility in chemical interaction and inherent immune efficacy, offers opportunities for various designs of nMOFs for immunotherapy. In this review, we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies. We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation. Finally, a prospect of nMOFs in cancer immunotherapy will be discussed.

References

  1. [1]

    Shields IV, C. W.; Wang, L. L. W.; Evans, M. A.; Mitragotri, S. Materials for immunotherapy. Adv. Mater. 2020, 32, 1901633.

    CAS  Google Scholar 

  2. [2]

    Sharma, P.; Hu-Lieskovan, S.; Wargo, J. A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017, 168, 707–723.

    CAS  Google Scholar 

  3. [3]

    Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science 2015, 348, 56–61.

    CAS  Google Scholar 

  4. [4]

    Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

    CAS  Google Scholar 

  5. [5]

    Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251.

    CAS  Google Scholar 

  6. [6]

    Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J. M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571.

    CAS  Google Scholar 

  7. [7]

    Michot, J. M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A. et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148.

    CAS  Google Scholar 

  8. [8]

    Cho, N. H.; Cheong, T. C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J. S.; Kim, S.; Kim, Y. K.; Seong, S. Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–682.

    CAS  Google Scholar 

  9. [9]

    Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994.

    CAS  Google Scholar 

  10. [10]

    Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

    Google Scholar 

  11. [11]

    Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

    CAS  Google Scholar 

  12. [12]

    Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019, 48, 3771–3810.

    Google Scholar 

  13. [13]

    Zhou, J. R.; Tian, G.; Zeng, L. J.; Song, X. E.; Bian, X. W. Nanoscaled metal-organic frameworks for Biosensing, imaging, and cancer therapy. Adv. Healthc. Mater. 2018, 7, e1800022.

    Google Scholar 

  14. [14]

    Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    CAS  Google Scholar 

  15. [15]

    Abucafy, M. P.; Caetano, B. L.; Chiari-Andréo, B. G.; Fonseca-Santos, B.; do Santos, A. M.; Chorilli, M.; Chiavacci, L. A. Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur. J. Pharm. Biopharm. 2018, 127, 112–119.

    CAS  Google Scholar 

  16. [16]

    Unamuno, X.; Imbuluzqueta, E.; Salles, F.; Horcajada, P.; Blanco-Prieto, M. J. Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur. J. Pharm. Biopharm. 2018, 132, 11–18.

    CAS  Google Scholar 

  17. [17]

    Wan, S. S.; Cheng, Q.; Zeng, X.; Zhang, X. Z. A Mn(III)-sealed metal-organic framework Nanosystem for redox-unlocked tumor Theranostics. ACS Nano 2019, 13, 6561–6571.

    CAS  Google Scholar 

  18. [18]

    Lyu, F.; Zhang, Y. F.; Zare, R. N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765.

    CAS  Google Scholar 

  19. [19]

    Wang, S. Z.; McGuirk, C. M.; Ross, M. B.; Wang, S. Y.; Chen, P. C.; Xing, H.; Liu, Y.; Mirkin, C. A. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139, 9827–9830.

    CAS  Google Scholar 

  20. [20]

    Duan, F.; Feng, X. C.; Yang, X. J.; Sun, W. T.; Jin, Y.; Liu, H. F.; Ge, K.; Li, Z. H.; Zhang, J. C. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017, 122, 23–33.

    CAS  Google Scholar 

  21. [21]

    Xiang, J.; Xu, L. G.; Gong, H.; Zhu, W. W.; Wang, C.; Xu, J.; Feng, L. Z.; Cheng, L.; Peng, R.; Liu, Z. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 2015, 9, 6401–6411.

    CAS  Google Scholar 

  22. [22]

    Liu, T. L.; Liu, H. Y.; Fu, C. H.; Li, L. L.; Chen, D.; Zhang, Y. Q.; Tang, F. Q. Silica nanorattle with enhanced protein loading: A potential vaccine adjuvant. J. Colloid Interface Sci. 2013, 400, 168–174.

    CAS  Google Scholar 

  23. [23]

    Liu, L. X.; Ma, P. C.; Wang, H.; Zhang, C.; Sun, H. F.; Wang, C.; Song, C. X.; Leng, X. G.; Kong, D. L.; Ma, G. L. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J. Control. Release 2016, 225, 230–239.

    CAS  Google Scholar 

  24. [24]

    Feng, Y. F.; Wang, H. R.; Zhang, S. N.; Zhao, Y.; Gao, J.; Zheng, Y. Y.; Zhao, P.; Zhang, Z. J.; Zaworotko, M. J.; Cheng, P. et al. Antibodies@MOFs: An in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 2019, 31, 1805148.

    Google Scholar 

  25. [25]

    Wang, K.; Wen, S. M.; He, L. H.; Li, A.; Li, Y.; Dong, H. Q.; Li, W.; Ren, T. B.; Shi, D. L.; Li, Y. Y. “Minimalist” Nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 2018, 12, 6398–6409.

    CAS  Google Scholar 

  26. [26]

    Chen, W.; Wu, C. S. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114–2133.

    CAS  Google Scholar 

  27. [27]

    Lu, K. D.; Aung, T.; Guo, N. N.; Weichselbaum, R.; Lin, W. B. Nanoscale Metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, e1707634.

    Google Scholar 

  28. [28]

    Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

    CAS  Google Scholar 

  29. [29]

    Ploetz, E.; Zimpel, A.; Cauda, V.; Bauer, D.; Lamb, D. C.; Haisch, C.; Zahler, S.; Vollmar, A. M.; Wuttke, S.; Engelke, H. Metal-organic framework nanoparticles induce Pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020, 32, 1907267.

    CAS  Google Scholar 

  30. [30]

    Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of Porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

    CAS  Google Scholar 

  31. [31]

    Cheng, H.; Jiang, X. Y.; Zheng, R. R.; Zuo, S. J.; Zhao, L. P.; Fan, G. L.; Xie, B. R.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z. A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 2019, 195, 75–85.

    CAS  Google Scholar 

  32. [32]

    Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem. Res. 2011, 44, 957–968.

    Google Scholar 

  33. [33]

    Cai, W.; Chu, C. C.; Liu, G.; Wáng, Y. X. J. Metal-organic frameworkbased Nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806–4822.

    CAS  Google Scholar 

  34. [34]

    Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 2016, 307, 342–360.

    Google Scholar 

  35. [35]

    Wu, M. X.; Yang, Y. W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Google Scholar 

  36. [36]

    Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

    CAS  Google Scholar 

  37. [37]

    Liu, R.; Yu, T.; Shi, Z.; Wang, Z. Y. The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine 2016, 11, 1187–1200.

    CAS  Google Scholar 

  38. [38]

    McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49, 6260–6266.

    CAS  Google Scholar 

  39. [39]

    He, L. C.; Liu, Y.; Lau, J.; Fan, W. P.; Li, Q. Y.; Zhang, C.; Huang, P. T.; Chen, X. Y. Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine 2019, 14, 1343–1365.

    CAS  Google Scholar 

  40. [40]

    Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharmaceutics 2009, 6, 659–668.

    CAS  Google Scholar 

  41. [41]

    Tyrrell, Z. L.; Shen, Y. Q.; Radosz, M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 2010, 35, 1128–1143.

    CAS  Google Scholar 

  42. [42]

    Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal Nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

    CAS  Google Scholar 

  43. [43]

    Rösler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver Rev. 2012, 64, 270–279.

    Google Scholar 

  44. [44]

    Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    CAS  Google Scholar 

  45. [45]

    Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal-organic frameworks: Structures and functional applications. Mater Today 2019, 27, 43–68.

    CAS  Google Scholar 

  46. [46]

    Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A. D.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618–2625.

    CAS  Google Scholar 

  47. [47]

    Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle III, T. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.

    CAS  Google Scholar 

  48. [48]

    Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  49. [49]

    Rocio-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metalorganic frameworks in green analytical chemistry. Separations 2019, 6, 33.

    CAS  Google Scholar 

  50. [50]

    Zhang, Y.; Wang, F. M.; Ju, E. G.; Liu, Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 2016, 26, 6454–6461.

    CAS  Google Scholar 

  51. [51]

    Liu, F.; Lin, L.; Zhang, Y.; Wang, Y. B.; Sheng, S.; Xu, C. N.; Tian, H. Y.; Chen, X. S. A tumor-microenvironment-activated nanozymemediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019, 31, e1902885.

    Google Scholar 

  52. [52]

    Zhang, Y.; Liu, C. Q.; Wang, F. M.; Liu, Z.; Ren, J. S.; Qu, X. G. Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem. Commun. 2017, 53, 1840–1843.

    CAS  Google Scholar 

  53. [53]

    Yang, Y.; Chen, Q. Q.; Wu, J. P.; Kirk, T. B.; Xu, J. K.; Liu, Z. H.; Xue, W. Reduction-responsive Codelivery system based on a metalorganic framework for eliciting potent cellular immune response. ACS Appl. Mater. Interfaces 2018, 10, 12463–12473.

    CAS  Google Scholar 

  54. [54]

    Liu, Y.; Zhao, Y. L.; Chen, X. Y. Bioengineering of metal-organic frameworks for Nanomedicine. Theranostics 2019, 9, 3122–3133.

    CAS  Google Scholar 

  55. [55]

    Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S. et al. Organelle-specific triggered release of Immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784–15791.

    CAS  Google Scholar 

  56. [56]

    Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

    CAS  Google Scholar 

  57. [57]

    Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Weichselbaum, R. R.; Lin, W. B. Chlorin-based Nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502–12510.

    CAS  Google Scholar 

  58. [58]

    Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

    CAS  Google Scholar 

  59. [59]

    Kim, K.; Lee, S.; Jin, E.; Palanikumar, L.; Lee, J. H.; Kim, J. C.; Nam, J. S.; Jana, B.; Kwon, T. H.; Kwak, S. K. et al. MOF X biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 27512–27520.

    CAS  Google Scholar 

  60. [60]

    Miao, Y. B.; Pan, W. Y.; Chen, K. H.; Wei, H. J.; Mi, F. L.; Lu, M. Y.; Chang, Y.; Sung, H. W. Engineering a Nanoscale Al-MOF-armored antigen carried by a “Trojan Horse”-like platform for oral vaccination to induce potent and long-lasting immunity. Adv. Funct. Mater. 2019, 29, 1904828.

    CAS  Google Scholar 

  61. [61]

    Liu, F. Y.; He, X. X.; Chen, H. D.; Zhang, J. P.; Zhang, H. M.; Wang, Z. X. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015, 6, 8003.

    CAS  Google Scholar 

  62. [62]

    Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

    Google Scholar 

  63. [63]

    Chen, W. S.; Zeng, K.; Liu, H.; Ouyang, J.; Wang, L. Q.; Liu, Y.; Wang, H.; Deng, L.; Liu, Y. N. Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic Photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 2017, 27, 1605795.

    Google Scholar 

  64. [64]

    Rojas, S.; Devic, T.; Horcajada, P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B 2017, 5, 2560–2573.

    CAS  Google Scholar 

  65. [65]

    An, J.; Farha, O. K.; Hupp, J. T.; Pohl, E.; Yeh, J. I.; Rosi, N. L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 2012, 3, 604.

    Google Scholar 

  66. [66]

    Zhong, X. F.; Sun, X. Nanomedicines based on nanoscale metalorganic frameworks for cancer immunotherapy. Acta Pharmacol. Sin. 2020, 41, 928–935.

    CAS  Google Scholar 

  67. [67]

    Li, S. X.; Wang, K. K.; Shi, Y. J.; Cui, Y. N.; Chen, B. L.; He, B.; Dai, W. B.; Zhang, H.; Wang, X. Q.; Zhong, C. L. et al. Novel biological functions of ZIF-NP as a delivery vehicle: High pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv. Funct. Mater. 2016, 26, 2715–2727.

    CAS  Google Scholar 

  68. [68]

    Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X. Z.; de Mello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J. et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21.

    Google Scholar 

  69. [69]

    Simon-Yarza, T.; Baati, T.; Neffati, F.; Njim, L.; Couvreur, P.; Serre, C.; Gref, R.; Najjar, M. F.; Zakhama, A.; Horcajada, P. In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. Int. J. Pharm. 2016, 511, 1042–1047.

    CAS  Google Scholar 

  70. [70]

    Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, e1707365.

    Google Scholar 

  71. [71]

    Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    CAS  Google Scholar 

  72. [72]

    Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V. et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 2015, 5, 7925.

    CAS  Google Scholar 

  73. [73]

    Abánades Lázaro, I.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561–578.

    Google Scholar 

  74. [74]

    Wuttke, S.; Braig, S.; Preiß, T.; Zimpel, A.; Sicklinger, J.; Bellomo, C.; Rädler, J. O.; Vollmar, A. M.; Bein, T. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem. Commun. 2015, 51, 15752–15755.

    CAS  Google Scholar 

  75. [75]

    Illes, B.; Hirschle, P.; Barnert, S.; Cauda, V.; Wuttke, S.; Engelke, H. Exosome-coated metal–organic framework nanoparticles: An efficient drug delivery platform. Chem. Mater. 2017, 29, 8042–8046.

    CAS  Google Scholar 

  76. [76]

    Hay, K. A.; Hanafi, L. A.; Li, D.; Gust, J.; Liles, W. C.; Wurfel, M. M.; López, J. A.; Chen, J. M.; Chung, D.; Harju-Baker, S. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295–2306.

    CAS  Google Scholar 

  77. [77]

    Au, K. M.; Satterlee, A.; Min, Y. Z.; Tian, X.; Kim, Y. S.; Caster, J. M.; Zhang, L. Z.; Zhang, T.; Huang, L.; Wang, A. Z. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016, 82, 178–193.

    CAS  Google Scholar 

  78. [78]

    Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, e1706759.

    Google Scholar 

  79. [79]

    Zhang, L.; Wang, Z. Z.; Zhang, Y.; Cao, F. F.; Dong, K.; Ren, J. S.; Qu, X. G. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic Nanoreactor for starvation-activated colon cancer therapy. ACS Nano 2018, 12, 10201–10211.

    CAS  Google Scholar 

  80. [80]

    Li, S. Y.; Cheng, H.; Qiu, W. X.; Zhang, L.; Wan, S. S.; Zeng, J. Y.; Zhang, X. Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017, 142, 149–161.

    CAS  Google Scholar 

  81. [81]

    Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323.

    CAS  Google Scholar 

  82. [82]

    Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

    CAS  Google Scholar 

  83. [83]

    Cai, W.; Wang, J. Q.; Chu, C. C.; Chen, W.; Wu, C. S.; Liu, G. Metalorganic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526.

    Google Scholar 

  84. [84]

    Qiao, Y. T.; Wan, J. Q.; Zhou, L. Q.; Ma, W.; Yang, Y. Y.; Luo, W. X.; Yu, Z. Q.; Wang, H. X. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wires Nanomed. Nanobi. 2019, 11, e1527.

    Google Scholar 

  85. [85]

    Cutrone, G.; Qiu, J. W.; Menendez-Miranda, M.; Casas-Solvas, J. M.; Aykac, A.; Li, X.; Foulkes, D.; Moreira-Alvarez, B.; Encinar, J. R.; Ladaviere, C. et al. Comb-like dextran copolymers: A versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohyd. Polym. 2019, 223, 115085.

    CAS  Google Scholar 

  86. [86]

    SK, M.; Banesh, S.; Trivedi, V.; Biswas, S. Selective and sensitive sensing of hydrogen peroxide by a Boronic acid functionalized metal-organic framework and its application in live-cell imaging. Inorg. Chem. 2018, 57, 14574–14581.

    CAS  Google Scholar 

  87. [87]

    Dekrafft, K. E.; Boyle, W. S.; Burk, L. M.; Zhou, O. Z.; Lin, W. B. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem. 2012, 22, 18139–18144.

    CAS  Google Scholar 

  88. [88]

    Hidalgo, T.; Giménez-Marqués, M.; Bellido, E.; Avila, J.; Asensio, M. C.; Salles, F.; Lozano, M. V.; Guillevic, M.; Simón-Vázquez, R.; González-Fernández, A. et al. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 2017, 7, 43099.

    CAS  Google Scholar 

  89. [89]

    Wang, W. Q.; Wang, L.; Li, Y.; Liu, S.; Xie, Z. G.; Jing, X. B. Nanoscale polymer metal-organic framework hybrids for effective Photothermal therapy of colon cancers. Adv. Mater. 2016, 28, 9320–9325.

    CAS  Google Scholar 

  90. [90]

    Wang, D. D.; Wu, H. H.; Zhou, J. J.; Xu, P. P.; Wang, C. L.; Shi, R. H.; Wang, H. B.; Wang, H.; Guo, Z.; Chen, Q. W. In situ one-pot synthesis of MOF-Polydopamine hybrid Nanogels with enhanced Photothermal effect for targeted cancer therapy. Adv. Sci. 2018, 5, 1800287.

    Google Scholar 

  91. [91]

    Bellido, E.; Hidalgo, T.; Lozano, M. V.; Guillevic, M.; Simón-Vázquez, R.; Santander-Ortega, M. J.; González-Fernández, Á.; Serre, C.; Alonso, M. J.; Horcajada, P. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: Toward stealth drug nanocarriers. Adv. Healthc. Mater. 2015, 4, 1246–1257.

    CAS  Google Scholar 

  92. [92]

    Cheng, G.; Li, W. Q.; Ha, L.; Han, X. H.; Hao, S. J.; Wan, Y.; Wang, Z. G.; Dong, F. P.; Zou, X.; Mao, Y. W. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of Biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282–7291.

    CAS  Google Scholar 

  93. [93]

    Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J. et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat. Commun. 2019, 10, 3199.

    Google Scholar 

  94. [94]

    Zhong, X. F.; Zhang, Y. T.; Tan, L.; Zheng, T.; Hou, Y. Y.; Hong, X. Y.; Du, G. S.; Chen, X. Y.; Zhang, Y. D.; Sun, X. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81–92.

    CAS  Google Scholar 

  95. [95]

    Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Ye, J. J.; Song, W.; Feng, J. et al. Expandable immunotherapeutic Nanoplatforms engineered from Cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 2019, 31, e1900499.

    Google Scholar 

  96. [96]

    Zou, M. Z.; Liu, W. L.; Li, C. X.; Zheng, D. W.; Zeng, J. Y.; Gao, F.; Ye, J. J.; Zhang, X. Z. A multifunctional biomimetic Nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 2018, 14, 1801120.

    Google Scholar 

  97. [97]

    Ni, K. Y.; Aung, T.; Li, S. Y.; Fatuzzo, N.; Liang, X. J.; Lin, W. B. Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 2019, 5, 1892–1913.

    CAS  Google Scholar 

  98. [98]

    Yang, J. C.; Shang, Y.; Li, Y. H.; Cui, Y.; Yin, X. B. An “all-in-one” antitumor and anti-recurrence/metastasis nanomedicine with multidrug co-loading and burst drug release for multi-modality therapy. Chem. Sci. 2018, 9, 7210–7217.

    CAS  Google Scholar 

  99. [99]

    Le, Q. V.; Choi, J.; Oh, Y. K. Nano delivery systems and cancer immunotherapy. J. Pharm. Investig. 2018, 48, 527–539.

    CAS  Google Scholar 

  100. [100]

    Coffman, R. L.; Sher, A.; Seder, R. A. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010, 33, 492–503.

    CAS  Google Scholar 

  101. [101]

    Hanagata, N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomed. 2017, 12, 515–531.

    CAS  Google Scholar 

  102. [102]

    Qian, H. Q.; Liu, B. R.; Jiang, X. Q. Application of nanomaterials in cancer immunotherapy. Mater Today Chem. 2018, 7, 53–64.

    CAS  Google Scholar 

  103. [103]

    Zhang, H. J.; Chen, W.; Gong, K.; Chen, J. H. Nanoscale Zeolitic Imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG Oligodeoxynucleotides. ACS Appl. Mater. Interfaces 2017, 9, 31519–31525.

    CAS  Google Scholar 

  104. [104]

    Tao, Y.; Ju, E. G.; Li, Z. H.; Ren, J. S.; Qu, X. G. Engineered CpGantigen conjugates protected gold Nanoclusters as smart selfvaccines for enhanced immune response and cell imaging. Adv. Funct. Mater. 2014, 24, 1004–1010.

    CAS  Google Scholar 

  105. [105]

    Krishnamachari, Y.; Salem, A. K. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 2009, 61, 205–217.

    CAS  Google Scholar 

  106. [106]

    Reed, S. G.; Bertholet, S.; Coler, R. N.; Friede, M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009, 30, 23–32.

    CAS  Google Scholar 

  107. [107]

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

    CAS  Google Scholar 

  108. [108]

    Zahm, C. D.; Johnson, L. E.; McNeel, D. G. Increased indoleamine 2, 3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol. Immun. 2019, 68, 1661–1669.

    CAS  Google Scholar 

  109. [109]

    Sun, Z. C.; Fu, Y. X.; Peng, H. Targeting tumor cells with antibodies enhances anti-tumor immunity. Biophys. Rep. 2018, 4, 243–253.

    CAS  Google Scholar 

  110. [110]

    Roberts, C. J. Therapeutic protein aggregation: Mechanisms, design, and control. Trends Biotechnol. 2014, 32, 372–380.

    CAS  Google Scholar 

  111. [111]

    Hansel, T. T.; Kropshofer, H.; Singer, T.; Mitchell, J. A.; George, A. J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338.

    CAS  Google Scholar 

  112. [112]

    Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

    CAS  Google Scholar 

  113. [113]

    Xu, J.; Saklatvala, R.; Mittal, S.; Deshmukh, S.; Procopio, A. Recent progress of potentiating immune checkpoint blockade with external stimuli-an industry perspective. Adv. Sci. 2020, 7, 1903394.

    CAS  Google Scholar 

  114. [114]

    Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.

    CAS  Google Scholar 

  115. [115]

    Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

    Google Scholar 

  116. [116]

    Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651–661.

    CAS  Google Scholar 

  117. [117]

    Ma, X. Y.; Ren, X. L.; Guo, X. D.; Fu, C. H.; Wu, Q.; Tan, L. F.; Li, H. B.; Zhang, W.; Chen, X. D.; Zhong, H. S. et al. Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019, 214, 119223.

    CAS  Google Scholar 

  118. [118]

    Casares, N.; Pequignot, M. O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691–1701.

    CAS  Google Scholar 

  119. [119]

    Kepp, O.; Galluzzi, L.; Martins, I.; Schlemmer, F.; Adjemian, S.; Michaud, M.; Sukkurwala, A. Q.; Menger, L.; Zitvogel, L.; Kroemer, G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metast. Rev. 2011, 30, 61–69.

    CAS  Google Scholar 

  120. [120]

    Hallek, M.; Fischer, K.; Fingerle-Rowson, G.; Fink, A. M.; Busch, R.; Mayer, J.; Hensel, M.; Hopfinger, G.; Hess, G.; von Grunhagen, U. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010, 376, 1164–1174.

    CAS  Google Scholar 

  121. [121]

    Lu, J. Q.; Liu, X. S.; Liao, Y. P.; Salazar, F.; Sun, B. B.; Jiang, W.; Chang, C. H.; Jiang, J. H.; Wang, X.; Wu, A. M. et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017, 8, 1811.

    Google Scholar 

  122. [122]

    Yang, W.; Bai, Y. B.; Xiong, Y.; Zhang, J.; Chen, S. K.; Zheng, X. J.; Meng, X. B.; Li, L. Y.; Wang, J.; Xu, C. G. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016, 531, 651–655.

    CAS  Google Scholar 

  123. [123]

    Lei, J.; Wang, H. J.; Zhu, D. M.; Wan, Y. B.; Yin, L. Combined effects of avasimibe immunotherapy, doxorubicin chemotherapy, and metal-organic frameworks nanoparticles on breast cancer. J. Cell. Physiol. 2020, 235, 4814–4823.

    CAS  Google Scholar 

  124. [124]

    Schaue, D. A century of radiation therapy and adaptive immunity. Front. Immunol. 2017, 8, 431.

    Google Scholar 

  125. [125]

    Chen, Q.; Chen, J. W.; Yang, Z. J.; Xu, J.; Xu, L. G.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, e1802228.

    Google Scholar 

  126. [126]

    Twyman-Saint Victor, C.; Rech, A. J.; Maity, A.; Rengan, R.; Pauken, K. E.; Stelekati, E.; Benci, J. L.; Xu, B. H.; Dada, H.; Odorizzi, P. M. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377.

    Google Scholar 

  127. [127]

    Ni, K. Y.; Lan, G. X.; Chan, C.; Quigley, B.; Lu, K. D.; Aung, T.; Guo, N. N.; La Riviere, P.; Weichselbaum, R. R.; Lin, W. B. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 2018, 9, 2351.

    Google Scholar 

  128. [128]

    Retif, P.; Pinel, S.; Toussaint, M.; Frochot, C.; Chouikrat, R.; Bastogne, T.; Barberi-Heyob, M. Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics 2015, 5, 1030–1044.

    CAS  Google Scholar 

  129. [129]

    Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011, 8, 14–29.

    CAS  Google Scholar 

  130. [130]

    Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.

    CAS  Google Scholar 

  131. [131]

    Lu, K. D.; He, C. B.; Lin, W. B. A Chlorin-based Nanoscale metalorganic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603.

    CAS  Google Scholar 

  132. [132]

    Lismont, M.; Dreesen, L.; Wuttke, S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 2017, 27, 1606314.

    Google Scholar 

  133. [133]

    Zeng, J. Y.; Zou, M. Z.; Zhang, M. K.; Wang, X. S.; Zeng, X.; Cong, H. J.; Zhang, X. Z. p-extended Benzoporphyrin-based metalorganic framework for inhibition of tumor metastasis. ACS Nano 2018, 12, 4630–4640.

    CAS  Google Scholar 

  134. [134]

    Guo, L. R.; Yan, D. D.; Yang, D. F.; Li, Y. J.; Wang, X. D.; Zalewski, O.; Yan, B. F.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 2014, 8, 5670–5681.

    CAS  Google Scholar 

  135. [135]

    Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

    CAS  Google Scholar 

  136. [136]

    Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154–8162.

    CAS  Google Scholar 

  137. [137]

    Cai, X. C.; Liu, B.; Pang, M. L.; Lin, J. Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/ photodynamic therapy. Dalton Trans. 2018, 47, 16329–16336.

    CAS  Google Scholar 

  138. [138]

    Li, Y. W.; Xu, N.; Zhou, J. L.; Zhu, W. H.; Li, L. T.; Dong, M. X.; Yu, H. T.; Wang, L.; Liu, W. S.; Xie, Z. G. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomater. Sci. 2018, 6, 2918–2924.

    CAS  Google Scholar 

  139. [139]

    Zhu, Y. D.; Chen, S. P.; Zhao, H.; Yang, Y.; Chen, X. Q.; Sun, J.; Fan, H. S.; Zhang, X. D. PPy@MIL-100 nanoparticles as a pHand near-IR-irradiation-responsive drug carrier for simultaneous Photothermal therapy and chemotherapy of cancer cells. ACS Appl. Mater. Interfaces 2016, 8, 34209–34217.

    CAS  Google Scholar 

  140. [140]

    Wang, Y. Q.; Zhang, J.; Zhang, C. Y.; Li, B. J.; Wang, J. J.; Zhang, X. J.; Li, D.; Sun, S. K. Functional-protein-assisted fabrication of Fe–gallic acid coordination polymer Nanonetworks for localized Photothermal therapy. ACS Sustainable Chem. Eng. 2018, 7, 994–1005.

    Google Scholar 

  141. [141]

    Zhang, H. Y.; Zhang, J.; Li, Q.; Song, A. X.; Tian, H. L.; Wang, J. Q.; Li, Z. H.; Luan, Y. X. Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020, 245, 119983.

    CAS  Google Scholar 

  142. [142]

    Mu, J.; He, L. C.; Huang, P.; Chen, X. Y. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coordin. Chem. Rev. 2019, 399, 213039.

    CAS  Google Scholar 

  143. [143]

    Wang, C. G.; Zhang, R.; Wei, X. M.; Lv, M. Z.; Jiang, Z. F. Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020, 145, 187–241.

    Google Scholar 

  144. [144]

    Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C. R.; Keppler, B. K.; Berger, W. Metal drugs and the anticancer immune response. Chem. Rev. 2019, 119, 1519–1624.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773154, 31771090, 31971323 and 81871315), and Shanghai Science and Technology Innovation (18JC1414500). N. W. would like to acknowledge supports from both Burapha and VISTEC.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nopphon Weeranoppanant or Haiqing Dong or Yongyong Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chong, G., Zang, J., Han, Y. et al. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Res. 14, 1244–1259 (2021). https://doi.org/10.1007/s12274-020-3179-9

Download citation

Keywords

  • cancer immunotherapy
  • nano metal-organic frameworks (nMOFs)
  • bioengineering
  • vaccine delivery
  • tumor-microenvironment modulation