High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer

Abstract

In this work, high quality uniform and dense nanostructured cobalt-doped zinc oxide (ZnO:Co) films were used as electron-transport layers in CH3NH3PbI3-based planar heterojunction perovskite solar cells (PSCs) on a flexible conductive substrate. Highly photo catalytically active ZnO:Co films were prepared by a low cost hydrothermal process using the aqueous solution of zinc nitrate hexahydrate, hexamethylenete-tramine and cobalt (II) nitrate hexahydrate. ZnO:Co films were deposited on indium tin oxide (ITO) covered polyethylene terephthalate (PET) flexible substrates. The growth was controlled by maintaining the autoclave temperature at 150 °C for 4 h. The CH3NH3PbI3 layer was deposited on the ZnO:Co films by spin coating. Spiro-OMeTAD was employed as a hole-transporting material. The structural, morphology and optical properties of the grown ZnO nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microcopy (FESEM), energy-dispersive X-ray spectrometry (EDX), ultraviolet-visible (UV-Vis) and photoelectrochemical propriety. XRD spectra showed that both ZnO and ZnO:Co nanorods had a hexagonal wurtzite structure with a strong preferred orientation along the (002) plane. The surface morphology of films was studied by FESEM and showed that both the pure and Co-doped ZnO films had hexagonal shaped nanorods. In the steady state, the ZnO electrode gave a photocurrent density of about 1.5 mA/cm2. However, the Co-doped ZnO electrode showed a photocurrent density of about 6 mA/cm2, which is 4-fold higher than that of the ZnO electrode. Based on the above synthesized Co-doped ZnO films, the photovoltaic performance of PSCs was studied. The Co-doped ZnO layers had a significant impact on the photovoltaic conversion efficiency (PCE) of the PSCs. The latter was attributed to an efficient charge separation and transport due to the better coverage of perovskite on the nanostructured Co-doped ZnO films. As a result, the measured PCE under standard solar conditions (A M 1.5G, 100 mW/cm2) reached 7%. SCAPS-1D simulation was also performed to analyze the effect of the co-doped ZnO thin film on the corresponding solar cell performances.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. L. et al. CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett.2014, 5, 1004–1011.

    CAS  Google Scholar 

  2. [2]

    Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed.2014, 53, 2812–2824.

    CAS  Google Scholar 

  3. [3]

    Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci.2013, 6, 1739–1743.

    CAS  Google Scholar 

  4. [4]

    Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PM3 single crystals. Science2015, 347, 967–970.

    CAS  Google Scholar 

  5. [5]

    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc.2009, 131, 6050–6051.

    CAS  Google Scholar 

  6. [6]

    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science2012, 338, 643–647.

    CAS  Google Scholar 

  7. [7]

    Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature2013, 501, 395–398.

    CAS  Google Scholar 

  8. [8]

    Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science2014, 345, 542–546.

    CAS  Google Scholar 

  9. [9]

    Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science2015, 348, 1234–1237.

    CAS  Google Scholar 

  10. [10]

    Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett.2013, 4, 2423–2429.

    CAS  Google Scholar 

  11. [11]

    Peng, H. T.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Yu, P. R.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photonics Energy2016, 6, 022002.

    Google Scholar 

  12. [12]

    Dong, Q. S.; Shi, Y. T.; Wang, K.; Li, Y.; Wang, S. F.; Zhang, H.; Xing, Y. J.; Du, Y.; Bai, X. G.; Ma, T. L. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C2015, 119, 10212–10217.

    CAS  Google Scholar 

  13. [13]

    Wu, Q. L.; Zhou, W. R.; Liu, Q.; Zhou, P. C.; Chen, T.; Lu, Y. L.; Qiao, Q. Q.; Yang, S. F. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells. ACSAppl. Mater. Interfaces2016, 8, 34464–34473.

    CAS  Google Scholar 

  14. [14]

    Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett.2013, 4, 3623–3630.

    CAS  Google Scholar 

  15. [15]

    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-rganic hybrid nanostructured solar cells. Nano Lett.2013, 13, 1764–1769.

    CAS  Google Scholar 

  16. [16]

    Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep.2012, 2, 591.

    Google Scholar 

  17. [17]

    Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale2011, 3, 4088–4093.

    CAS  Google Scholar 

  18. [18]

    Jeon, N. J.; Lee, H. G; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. o-methoxy substituents in Spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc.2014, 136, 7837–7840.

    CAS  Google Scholar 

  19. [19]

    Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science2014, 345, 295–298.

    CAS  Google Scholar 

  20. [20]

    Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics2014, 8, 133–138.

    CAS  Google Scholar 

  21. [21]

    Dymshits, A.; Iagher, L.; Etgar, L. Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials2016, 9, 60.

    Google Scholar 

  22. [22]

    Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett.2014, 14, 724–730.

    CAS  Google Scholar 

  23. [23]

    Boudjemaa, A.; Boumaza, S.; Trari, M.; Bouarab, R.; Bouguelia, A. Physical and photo-electrochemical characterizations of a-Fe2O3. Application for hydrogen production. Int. J. Hydrogen Energy2009, 34, 4268–4274.

    CAS  Google Scholar 

  24. [24]

    Carnie, M. J.; Charbonneau, C.; Davies, M. L.; Troughton, J.; Watson, T. M.; Wojciechowski, K.; Snaith, H.; Worsley, D. A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun.2013, 49, 7893–7895.

    CAS  Google Scholar 

  25. [25]

    Bouhjar, F.; Mollar, M.; Chourou, M. L.; Marí, B.; Bessaïs, B. Hydrothermal synthesis of nanostructured Cr-doped hematite with enhanced photoelectrochemical activity. Electrochim. Acta2018, 10, 838–846.

    Google Scholar 

  26. [26]

    Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Photo-deposition of cobalt-phosphate group modified hematite for efficient water splitting. Sol. Energy Mater. Sol. Cells2019, 195, 241–249.

    CAS  Google Scholar 

  27. [27]

    Bouhjar, F.; Ullah, S.; Chourou, M. L.; Mollar, M.; Marí, B.; Bessaïs, B. Electrochemical fabrication and characterization of p-CuSCN/n-Fe2O3 heterojunction devices for hydrogen production. J. Electrochem. Soc.2017, 164, H936–H945.

    CAS  Google Scholar 

  28. [28]

    Bouhjar, F.; Mollar, M.; Ullah, S.; Marí, B.; Bessaïs B. Influence of a compact α-Fe2O3 layer on the photovoltaic performance of perovskite-based solar cells. J. Electrochem. Soc.2018, 165, H30–H38.

    CAS  Google Scholar 

  29. [29]

    Bouhjar, F.; Bessaïs, B.; Marí, B. Ultrathin-layer α-Fe2O3 deposited under hematite for solar water splitting. J. Solid State Electrochem.2018, 22, 2347–2356.

    CAS  Google Scholar 

  30. [30]

    Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Electrodeposited chromium-doped α-Fe2O3 under various applied potential configurations for solar water splitting. ResultsPhys, in press, DOI: https://doi.org/10.1016/j.rinp.2020.102996.

  31. [31]

    Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, C. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater.2009, 21, 4087–4108.

    CAS  Google Scholar 

  32. [32]

    Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett.2005, 86, 053114.

    Google Scholar 

  33. [33]

    Gonzalez-Valls, I.; Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci.2009, 2, 19–34.

    CAS  Google Scholar 

  34. [34]

    Wang, L.; Fu, W. F.; Gu, Z. W.; Fan, C. C.; Yang, X.; Li, H. Y.; Chen, H. Z. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J. Mater. Chem. C2014, 2, 9087–9090.

    CAS  Google Scholar 

  35. [35]

    Son, D. Y.; Im, J. H.; Kim, H. S.; Park, N. G. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J. Phys. Chem. C2014, 118, 16567–16573.

    CAS  Google Scholar 

  36. [36]

    Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun.2013, 49, 11089–11091.

    CAS  Google Scholar 

  37. [37]

    Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy2014, 7, 86–96.

    CAS  Google Scholar 

  38. [38]

    Niu, H. H.; Zhang, S. W.; Ma, Q.; Qin, S. X.; Wan, L.; Xu, J. Z.; Miao, S. D. Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode. RSCAdv.2013, 3, 17228–17235.

    CAS  Google Scholar 

  39. [39]

    Baruah, S.; Dutta, J. Effect of seeded substrates on hydrothermally grown ZnO nanorods. J. Sol-Gel Sci. Technol.2009, 50, 456–464.

    CAS  Google Scholar 

  40. [40]

    Saravanakumar, K.; Ravichandran, K. Synthesis of heavily doped nanocrystalline ZnO:Al powders using a simple soft chemical method. J. Mater. Sci. Mater. Electron.2012, 23, 1462–1469.

    CAS  Google Scholar 

  41. [41]

    Mahroug, A.; Boudjadar, S.; Hamrit, S.; Guerbous, L. Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol-gel spin coating technique. Mater. Lett.2014, 134, 248–251.

    CAS  Google Scholar 

  42. [42]

    Venkatachalam, S.; Iida, Y.; Kanno, Y. Preparation and characterization of Al doped ZnO thin films by PLD. Superlattices Microstruct.2008, 44, 127–135.

    CAS  Google Scholar 

  43. [43]

    Amin, G.; Asif, M. H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method Share on. J. Nanomater.2011, 2011, 5.

    Google Scholar 

  44. [44]

    Lo, S. S.; Huang, D.; Tu, C. H.; Hou, C. H.; Chen, C. C. Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process. J. Phys. D: Appl. Phys.2009, 42, 095420.

    Google Scholar 

  45. [45]

    Yoo, Y. Z.; Fukumura, T.; Jin, Z. W.; Hasegawa, K.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koinuma, H. ZnO-CoO solid solution thin films. J. Appl. Phys.2001, 90, 4246–4250.

    CAS  Google Scholar 

  46. [46]

    Kumar, R.; Khare, N. Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films. Thin Solid Films2008, 516, 1302–1307.

    CAS  Google Scholar 

  47. [47]

    Roy, T. K.; Sanyal, D.; Bhowmick, D.; Chakrabarti, A. Temperature dependent resistivity study on zinc oxide and the role of defects. Mater. Sci. Semicond. Process.2013, 16, 332–336.

    CAS  Google Scholar 

  48. [48]

    Yan, L.; Ong, C. K.; Rao, X. S. Magnetic order in Co-doped and (Mn, Co) codoped ZnO thin films by pulsed laser deposition. J. Appl. Phys.2004, 96, 508–511.

    CAS  Google Scholar 

  49. [49]

    Birajdar, S. D.; Khirade, P. P.; Saraf, T. S.; Alange, R. C.; Jadhav, K. M. Sol-gel auto combustion synthesis, electrical and dielectric properties of Zn1−xCoxO (0.0 ⩽ x ⩽ 0.36) semiconductor nanoparticles. J. Alloys Compd.2017, 691, 355–363.

    CAS  Google Scholar 

  50. [50]

    Kulandaisamy, A. J.; Karthek, C.; Shankar, P.; Mani, G. K.; Rayappan, J. B. B. Tuning selectivity through cobalt doping in spray pyrolysis deposited ZnO thin films. Ceram. Int.2016, 42, 1408–1415.

    CAS  Google Scholar 

  51. [51]

    Liang, W. J.; Yuhas, B. D.; Yang, P. D. Magnetotransport in Co-doped ZnO nanowires. Nano Lett.2009, 9, 892–896.

    CAS  Google Scholar 

  52. [52]

    Whitaker, K. M.; Raskin, M.; Kiliani, G.; Beha, K.; Ochsenbein, S. T.; Janssen, N.; Fonin, M.; Rüdiger, U.; Leitenstorfer, A.; Gamelin, D. R. et al. Spin-on spintronics: Ultrafast electron spin dynamics in ZnO and Zn1−xCoxO Sol-Gel films. Nano Lett.2011, 11, 3355–3360.

    CAS  Google Scholar 

  53. [53]

    Woo, H. S.; Kwak, C. H.; Chung, J. H.; Lee, J. H. Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. ACS Appl. Mater. Interfaces2014, 6, 22553–22560.

    CAS  Google Scholar 

  54. [54]

    De Carvalho, H. B.; de Godoy, M. P. F.; Paes, R. W. D.; Mir, M.; de Zevallos, A. O.; Iikawa, F.; Brasil, M. J. S. P.; Chitta, V. A.; Ferraz, W. B.; Boselli, M. A. et al. Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J. Appl. Phys.2010, 108, 033914.

    Google Scholar 

  55. [55]

    Fitzgerald, C. B.; Venkatesan, M.; Lunney, J. G.; Dorneles, L. S.; Coey, J. M. D. Cobalt-doped ZnO- a room temperature dilute magnetic semiconductor. Appl. Surf. Sci.2005, 247, 493–496.

    CAS  Google Scholar 

  56. [56]

    Zhu, Z. L.; Zhao, D. B.; Chueh, C. C.; Shi, X. L.; Li, Z. A.; Jen, A. K. Y. Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule2018, 2, 168–183.

    CAS  Google Scholar 

  57. [57]

    Tai, Q. D.; You, P.; Sang, H. Q.; Liu, Z. K.; Hu, C. L.; Chan, H. L. W.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun.2016, 7, 11105.

    CAS  Google Scholar 

  58. [58]

    Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep.2012, 2, 591.

    Google Scholar 

  59. [59]

    Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskitefullerene planar - heterojunction hybrid solar cells. Adv. Mater.2013, 25, 3727–3732.

    CAS  Google Scholar 

  60. [60]

    Mao, A.; Han, G. Y.; Park, J. H. Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a goldnanorod substrate. J. Mater. Chem.2010, 20, 2247–2250.

    CAS  Google Scholar 

  61. [61]

    Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PM3 perovskite sensitizer. Nano Lett.2013, 13, 2412–2417.

    CAS  Google Scholar 

  62. [62]

    Bi, D. Q.; Moon, S. J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv.2013, 3, 18762c18766.

    Google Scholar 

  63. [63]

    Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P. et al. p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep.2015, 4, 4756.

    Google Scholar 

  64. [64]

    Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc.2014, 136, 758–764.

    CAS  Google Scholar 

  65. [65]

    Jia, X. Y.; Zhao, J. W.; Qin, L. R.; Yang, C. F. Electrodeposition of PtNi nanosheets on flexible PET/ITO substrate and their electrocatalytic properties for methanol oxidation. J. Nano Res.2015, 33, 150–157.

    CAS  Google Scholar 

  66. [66]

    Sima, M.; Vasile, E.; Sima, M. ZnO films and nanorod/shell arrays electrodeposited on PET-ITO electrodes. Mater. Res. Bull.2013, 48, 1581–1586.

    CAS  Google Scholar 

  67. [67]

    Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Grätzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C2009, 113, 772–782.

    CAS  Google Scholar 

  68. [68]

    Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater.2003, 15, 464–466.

    CAS  Google Scholar 

  69. [69]

    Zhang, Y. Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y. Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater.2012, 2012, 20.

    Google Scholar 

  70. [70]

    Amin, G.; Asif, M. H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater.2011, 2011, 5.

    Google Scholar 

  71. [71]

    Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett.2011, 11, 2119–2125.

    CAS  Google Scholar 

  72. [72]

    Belkhedkar, M. R.; Ubale, A. U. Preparation and characterization of nanocrystalline a-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method. Int. J. Mater. Chem.2014, 4, 109–116.

    Google Scholar 

  73. [73]

    Shinde, S. S.; Bansode, R. A.; Bhosale, C. H.; Rajpure, K. Y. Physical properties of hematite a-Fe2O3 thin films: Application to photoelectrochemical solar cells. J. Semicond.2011, 32, 013001.

    Google Scholar 

  74. [74]

    Souza, F. L.; Lopes, K. P.; Nascente, P. A. P.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Solar Energy Mater. Solar Cells2009, 93, 362–368.

    CAS  Google Scholar 

  75. [75]

    Baig, F.; Khattak, Y. H.; Ullah, S.; Soucase, B. M.; Beg, S.; Ullah, H. Numerical analysis a guide to improve the efficiency of experismentally designed solar cell. Appl. Phys. A2018, 124, 471.

    Google Scholar 

  76. [76]

    Baig, F.; Khattak, Y. H.; Ullah, S.; Marí, B.; Beg, S.; Ullah, H. Numerical analysis of a novel FTO/n-MAPbI3/p-MAPbI3/p-MAPbBr3 organic-inorganic lead halide perovskite solar cell. J. Nanoelectron. Optoe.2018, 13, 1320–1327.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of High Education and Scientific Research in Tunisia, the Spanish Ministry of Economy and Competitiveness

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feriel Bouhjar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouhjar, F., Derbali, L. & Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2896-4

Download citation

Keywords

  • perovskite solar cell
  • ZnO nanorods
  • hydrothermal deposition
  • XRD analysis
  • FESEM analysis
  • photoelectrochemical properties