Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing

Abstract

Wound management is a crucial measure for skin wound healing and is significantly important to maintaining the integrity of skins and their functions. Electrical stimulation at the wound site is a compelling strategy for skin wound repair. However, there has been an urgent need for wearable and point-of-care electrical stimulation devices that have self-adhesive and mechanical properties comparable to wound tissue. Herein, we develop a bioinspired hybrid patch with self-adhesive and piezoelectric nanogenerator (HPSP) for promoting skin wound healing, which is composed of a mussel-inspired hydrogel matrix and a piezoelectric nanogenerator based on aligned electrospun poly(vinylidene fluoride) nanofibers. The device with optimized modulus and permeability for skin wear can self-adhere to the wound site and locally produce a dynamic voltage caused by motion. We show that the HPSP not only promotes fibroblast proliferation and migration in vitro, but also effectively facilitates the collagen deposition, angiogenesis, and re-epithelialization in vivo with the increased expressions of crucial growth factors. The HPSP reduces the wound closure time of full-thickness skin defects by about 1/3, greatly accelerating the healing process. This patch can serve as wearable and real-time electrical stimulation devices, potentially useful in clinical applications of skin wound healing.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    McLister, A.; McHugh, J.; Cundell, J.; Davis, J. New developments in smart bandage technologies for wound diagnostics. Adv. Mater.2016, 28, 5732–5737.

    CAS  Google Scholar 

  2. [2]

    Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature2008, 453, 314–321.

    CAS  Google Scholar 

  3. [3]

    Martin, P. Wound healing-aiming for perfect skin regeneration. Science1997, 276, 75–81.

    CAS  Google Scholar 

  4. [4]

    Powers, J. G.; Higham, C.; Broussard, K.; Phillips, T. J. Wound healing and treating wounds: Chronic wound care and management. J. Am. Acad. Dermatol.2016, 74, 607–625.

    Google Scholar 

  5. [5]

    Xi, Y. W.; Ge, J.; Guo, Y.; Lei, B.; Ma, P. X. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano2018, 12, 10772–10784.

    CAS  Google Scholar 

  6. [6]

    Shi, L. X.; Liu, X.; Wang, W. S.; Jiang, L.; Wang, S. T. A self-pumping dressing for draining excessive biofluid around wounds. Adv. Mater.2019, 31, 1804187.

    Google Scholar 

  7. [7]

    Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res.2017, 10, 3358–3376.

    CAS  Google Scholar 

  8. [8]

    Liang, Y. P.; Zhao, X.; Hu, T. L.; Chen, B. J.; Yin, Z. H.; Ma, P. X.; Guo, B. L. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small2019, 15, 1900046.

    Google Scholar 

  9. [9]

    Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res.2020, 13, 496–502.

    CAS  Google Scholar 

  10. [10]

    Li, W. P.; Su, C. H.; Wang, S. J.; Tsai, F. J.; Chang, C. T.; Liao, M. C.; Yu, C. C.; Vi Tran, T. T.; Lee, C. N.; Chiu, W. T. et al. CO2 delivery to accelerate incisional wound healing following single irradiation of near-infrared lamp on the coordinated colloids. ACS Nano2017, 11, 5826–5835.

    CAS  Google Scholar 

  11. [11]

    Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther.2017, 34, 599–610.

    Google Scholar 

  12. [12]

    Bhang, S. H.; Jang, W. S.; Han, J.; Yoon, J. K.; La, W. G.; Lee, E.; Kim, Y. S.; Shin, J. Y.; Lee, T. J.; Baik, H. K. et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater.2017, 27, 1603497.

    Google Scholar 

  13. [13]

    Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy2019, 59, 705–714.

    CAS  Google Scholar 

  14. [14]

    Wang, A. C.; Liu, Z.; Hu, M.; Wang, C. C.; Zhang, X. D.; Shi, B. J.; Fan, Y. B.; Cui, Y. G.; Li, Z.; Ren, K. L. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy2018, 43, 63–71.

    CAS  Google Scholar 

  15. [15]

    Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G. P.; Wang, F.; Guo, A. H.; Walczysko, P.; Gu, Y. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature2006, 442, 457–460.

    CAS  Google Scholar 

  16. [16]

    Huttenlocher, A.; Horwitz, A. R. Wound healing with electric potential. N. Engl. J. Med.2007, 356, 303–304.

    CAS  Google Scholar 

  17. [17]

    Zhao, M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin. Cell Dev. Biol.2009, 20, 674–682.

    CAS  Google Scholar 

  18. [18]

    Kloth, L. C. Electrical stimulation technologies for wound healing. Adv. Wound Care2014, 3, 81–90.

    Google Scholar 

  19. [19]

    Long, Y.; Wei, H.; Li, J.; Yao, G.; Yu, B.; Ni, D. L.; Gibson, A. L. F.; Lan, X. L.; Jiang, Y. D.; Cai, W. B. et al. Effective wound healing enabled by discrete alternative electric fields from wearable nano-generators. ACS Nano2018, 12, 12533–12540.

    CAS  Google Scholar 

  20. [20]

    Kai, H.; Yamauchi, T.; Ogawa, Y.; Tsubota, A.; Magome, T.; Miyake, T.; Yamasaki, K.; Nishizawa, M. Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv. Healthc. Mater.2017, 6, 1700465.

    Google Scholar 

  21. [21]

    Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater.2016, 28, 4283–4305.

    CAS  Google Scholar 

  22. [22]

    Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett.2010, 10, 726–731.

    CAS  Google Scholar 

  23. [23]

    Li, M.; Jie, Y.; Shao, L. H.; Guo, Y. L.; Cao, X.; Wang, N.; Wang, Z. L. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res.2019, 12, 1831–1835.

    CAS  Google Scholar 

  24. [24]

    Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P. S. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res.2017, 10, 3557–3570.

    CAS  Google Scholar 

  25. [25]

    Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun.2013, 4, 1633.

    Google Scholar 

  26. [26]

    Yu, Y. H.; Sun, H. Y.; Orbay, H.; Chen, F.; England, C. G.; Cai, W. B.; Wang, X. D. Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy2016, 27, 275–281.

    CAS  Google Scholar 

  27. [27]

    Amjadi, M.; Sheykhansari, S.; Nelson, B. J.; Sitti, M. Recent advances in wearable transdermal delivery systems. Adv. Mater.2018, 30, 1704530.

    Google Scholar 

  28. [28]

    Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater.2012, 22, 4044–4050.

    CAS  Google Scholar 

  29. [29]

    Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater.2015, 14, 737–744.

    CAS  Google Scholar 

  30. [30]

    Yu, Y.; Yuk, H.; Parada, G. A.; Wu, Y.; Liu, X. Y.; Nabzdyk, C. S.; Youcef-Toumi, K.; Zang, J. F.; Zhao, X. H. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater.2019, 31, 1807101.

    Google Scholar 

  31. [31]

    Han, L.; Lu, X.; Liu, K. Z.; Wang, K. F.; Fang, L. M.; Weng, L. T.; Zhang, H. P.; Tang, Y. H.; Ren, F. Z.; Zhao, C. C. et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano2017, 11, 2561–2574.

    CAS  Google Scholar 

  32. [32]

    Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev.2014, 114, 5057–5115.

    CAS  Google Scholar 

  33. [33]

    Han, L.; Yan, L. W.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Zhou, J.; Fang, J.; Ren, F. Z.; Lu, X. Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater.2018, 30, 5561–5572.

    CAS  Google Scholar 

  34. [34]

    Han, L.; Yan, L. W.; Wang, K. F.; Fang, L. M.; Zhang, H. P.; Tang, Y. H.; Ding, Y. H.; Weng, L. T.; Xu, J. L.; Weng, J. et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater.2017, 9, e372.

    CAS  Google Scholar 

  35. [35]

    Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science2007, 318, 426–430.

    CAS  Google Scholar 

  36. [36]

    Ghobril, C.; Grinstaff, M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev.2015, 44, 1820–1835.

    CAS  Google Scholar 

  37. [37]

    Gao, Y. J.; Du, H. Y.; Xie, Z. J.; Li, M. M.; Zhu, J. J.; Xu, J. W.; Zhang, L. B.; Tao, J.; Zhu, J. T. Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B2019, 7, 3644–3651.

    CAS  Google Scholar 

  38. [38]

    Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf. B2012, 96, 29–36.

    CAS  Google Scholar 

  39. [39]

    Xiao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; Xiao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano2018, 12, 1023–1032.

    CAS  Google Scholar 

  40. [40]

    Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res.2018, 11, 5556–5565.

    CAS  Google Scholar 

  41. [41]

    Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Hu, J.; Tanaka, Y.; Gong, J. P.; Kitamura, N.; Yasuda, K. Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure. Polym. Chem.2011, 2, 575–580.

    CAS  Google Scholar 

  42. [42]

    Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science2017, 357, 378–381.

    CAS  Google Scholar 

  43. [43]

    Fang, J.; Niu, H. T.; Wang, H. X.; Wang, X. G; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci.2013, 6, 2196–2202.

    CAS  Google Scholar 

  44. [44]

    Tashiro, K.; Kobayashi, M.; Tadokoro, H. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules1981, 14, 1757–1764.

    CAS  Google Scholar 

  45. [45]

    Fang, J.; Wang, X. G; Lin, T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem.2011, 21, 11088–11091.

    CAS  Google Scholar 

  46. [46]

    Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano2018, 12, 8588–8596.

    CAS  Google Scholar 

  47. [47]

    Kang, S. B.; Won, S. H.; Im, M. J.; Kim, C. U.; Park, W. I.; Baik, J. M.; Choi, K. J. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers. Nanotechnology2017, 28, 395402.

    Google Scholar 

  48. [48]

    Ico, G.; Showalter, A.; Bosze, W.; Gott, S. C.; Kim, B. S.; Rao, M. P.; Myung, N. V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A2016, 4, 2293–2304.

    CAS  Google Scholar 

  49. [49]

    Persano, L.; Dagdeviren, C.; Maruccio, C.; De Lorenzis, L.; Pisignano, D. Cooperativity in the enhanced piezoelectric response of polymer nanowires. Adv. Mater.2014, 26, 7574–7580.

    CAS  Google Scholar 

  50. [50]

    Yan, J.; Liu, M.; Jeong, Y. G.; Kang, W. M.; Li, L.; Zhao, Y. X.; Deng, N. P.; Cheng, B. W.; Yang, G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy2019, 56, 662–692.

    CAS  Google Scholar 

  51. [51]

    Zhang, L. L.; Gui, J. Z.; Wu, Z. Z.; Li, R.; Wang, Y.; Gong, Z. Y.; Zhao, X. Z.; Sun, C. L.; Guo, S. S. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy2019, 65, 103924.

    CAS  Google Scholar 

  52. [52]

    Hofmann, A.; Ritz, U.; Verrier, S.; Eglin, D.; Alini, M.; Fuchs, S.; Kirkpatrick, C. J.; Rommens, P. M. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials2008, 29, 4217–4226.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the funding support from the National Natural Science Foundation of China (Nos. 51973075 and 51525302) and Program for HUST Academic Frontier Youth Team (2015-01). The authors thank HUST Analytical and Testing Center for their supports on the facilities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lianbin Zhang or Juan Tao or Jintao Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, S., Zhou, N., Gao, Y. et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2891-9

Download citation

Keywords

  • piezoelectric nanogenerator
  • self-adhesive hydrogel
  • hybrid patch
  • electrical stimulation
  • wound healing