Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media


The challenge for single-atom catalysts in various C—C cross coupling reaction exists in the development of solid supporting materials. It has been desired to find a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media. Here, we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom (MOP-BPY(Pd)) and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media. It was revealed that each tetrahedral cage of MOP-BPY(Pd) has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water. The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0% for various substrates we have tested in the aqueous media, which is superior to those of the molecular Pd complex and metal-organic framework (MOF) anchoring Pd atoms. Moreover, MOP-BPY(Pd) was successfully recovered and recycled without performance degradation.

This is a preview of subscription content, log in to check access.


  1. [1]

    Zhang, L. L.; Wang, A. Q.; Miller, J. T.; Liu, X. Y.; Yang, X. F.; Wang, W. T.; Li, L.; Huang, Y. Q.; Mou, C. Y.; Zhang, T. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal.2014, 4, 1546–1553.

    CAS  Google Scholar 

  2. [2]

    Zhang, X. Y.; Sun, Z. C.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y. T.; Tao, F. F. C—C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc.2018, 140, 954962.

    Google Scholar 

  3. [3]

    Fernández, E.; Rivero-Crespo, M. A.; Domínguez, I.; Rubio-Marqués, P.; Oliver-Meseguer, J.; Liu, L. C.; Cabrero-Antonino, M.; Gavara, R.; Hernández-Garrido, J. C.; Boronat, M. et al. Base-controlled Heck, Suzuki, and Sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc.2019, 141, 1928–1940.

    Google Scholar 

  4. [4]

    Yin, L. X.; Liebscher, J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev.2007, 107, 133–173.

    CAS  Google Scholar 

  5. [5]

    Veerakumar, P.; Thanasekaran, P.; Lu, K. L.; Lin, K. C.; Rajagopal, S. Computational studies of versatile heterogeneous palladium-catalyzed Suzuki, Heck, and Sonogashira coupling reactions. ACS Sustain. Chem. Eng.2017, 5, 8475–8490.

    CAS  Google Scholar 

  6. [6]

    Bernini, R.; Cacchi, S.; Fabrizi, G.; Forte, G.; Petrucci, F.; Prastaro, A.; Niembro, S.; Shafir, A.; Vallribera, A. Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: Application to alkynylation of aryl halides, Suzuki-Miyaura cross-coupling, and Heck reactions under aerobic conditions. Green Chem.2010, 12, 150–158.

    CAS  Google Scholar 

  7. [7]

    Biffis, A.; Zecca, M.; Basato, M. Palladium metal catalysts in Heck C—C coupling reactions. J. Mol. Catal. A Chem.2001, 173, 249–274.

    CAS  Google Scholar 

  8. [8]

    Suzaki, Y.; Kobayashi, Y.; Tsuchido, Y.; Osakada, K. Pd-catalyzed Sonogashira coupling in aqueous media. Observation of micelles that contain substrates and catalyst. Mol. Catal.2019, 466, 106–111.

    CAS  Google Scholar 

  9. [9]

    Christoffel, F.; Ward, T. R. Palladium-catalyzed heck cross-coupling reactions in water: A comprehensive review. Catal. Lett.2018, 148, 489–511.

    CAS  Google Scholar 

  10. [10]

    Lakshminarayana, B.; Mahendar, L.; Ghosal, P.; Satyanarayana, G.; Subrahmanyam, C. Nano-sized recyclable PdO supported carbon nanostructures for Heck reaction: Influence of carbon materials. ChemistrySelect2017, 2, 2700–2707.

    CAS  Google Scholar 

  11. [11]

    Tran, T. P. N.; Thakur, A.; Trinh, D. X.; Dao, A. T. N.; Taniike, T. Design of Pd@graphene oxide framework nanocatalyst with improved activity and recyclability in Suzuki-Miyaura cross-coupling reaction. Appl. Catal. A: Gen2018, 549, 60–67.

    CAS  Google Scholar 

  12. [12]

    Diyarbakir, S.; Can, H. S.; Metin, O. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces2015, 7, 3199–3206.

    CAS  Google Scholar 

  13. [13]

    Sharavath, V.; Ghosh, S. Palladium nanoparticles on noncovalently functionalized graphene-based heterogeneous catalyst for the Suzuki-Miyaura and Heck-Mizoroki reactions in water. RSC Adv.2014, 4, 48322–48330.

    CAS  Google Scholar 

  14. [14]

    Scheuermann, G M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc.2009, 131, 8262–8270.

    CAS  Google Scholar 

  15. [15]

    Balaswamy, K.; Pullaiah, P. C.; Srinivas, K.; Rao, M. M. Polystyrene-supported palladium(II) N,N-dimethylethylenediamine complex: A recyclable catalyst for Suzuki-Miyaura cross-coupling reactions in water. Inorg. Chim. Acta2014, 423, 95–100.

    Google Scholar 

  16. [16]

    Moussa, S.; Siamaki, A. R.; Gupton, B. F.; El-Shall, M. S. Pd-partially reduced graphene oxide catalysts (Pd/PRGO): Laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions. ACS Catal.2012, 2, 145–154.

    CAS  Google Scholar 

  17. [17]

    De Castro, K. A.; Rhee, H. Resin-immobilized palladium nanoparticle catalysts for Suzuki-Miyaura cross-coupling reaction in aqueous media. J. Incl. Phenom. Macrocycl. Chem.2015, 82, 13–24.

    CAS  Google Scholar 

  18. [18]

    Chen, L. Y.; Rangan, S.; Li, J.; Jiang, H. F.; Li, Y. W. A molecular Pd(II) complex incorporated into a MOF as a highly active singlesite heterogeneous catalyst for C—Cl bond activation. Green Chem.2014, 16, 3978–3985.

    CAS  Google Scholar 

  19. [19]

    Nagai, D.; Goto, H. Effective heterogeneous catalyst for Suzuki-Miyaura cross-coupling in aqueous media: Melamine cyanurate complex containing Pd species. Bull. Chem. Soc. Jpn.2018, 91, 147–152.

    CAS  Google Scholar 

  20. [20]

    Yang, Y.; Reber, A. C.; Gilliland III, S. E.; Castano, C. E.; Gupton, B. F.; Khanna, S. N. More than just a support: Graphene as a solid-state ligand for palladium-catalyzed cross-coupling reactions. J. Catal.2018, 360, 20–26.

    CAS  Google Scholar 

  21. [21]

    Dighe, M. G.; Lonkar, S. L.; Degani, M. S. Mechanistic insights into palladium leaching in novel Pd/C-catalyzed boron-Heck reaction of arylboronic acid. Synlett2013, 24, 347–350.

    CAS  Google Scholar 

  22. [22]

    Veerakumar, P.; Thanasekaran, P.; Lu, K. L.; Liu, S. B.; Rajagopal, S. Functionalized silica matrices and palladium: A versatile heterogeneous catalyst for Suzuki, Heck, and Sonogashira reactions. ACS Sustain. Chem. Eng.2017, 5, 6357–6376.

    CAS  Google Scholar 

  23. [23]

    MacQuarrie, S.; Horton, J. H.; Barnes, J.; McEleney, K.; Loock, H. P.; Crudden, C. M. Visual observation of redistribution and dissolution of palladium during the Suzuki-Miyaura reaction. Angew. Chem., Int. Ed.2008, 47, 3279–3282.

    CAS  Google Scholar 

  24. [24]

    Richardson, J. M.; Jones, C. W. Strong evidence of solution-phase catalysis associated with palladium leaching from immobilized thiols during Heck and Suzuki coupling of aryl iodides, bromides, and chlorides. J. Catal.2007, 251, 80–93.

    CAS  Google Scholar 

  25. [25]

    Huang, Y. B.; Zheng, Z. L.; Liu, T. F.; Lü, J.; Lin, Z. J.; Li, H. F.; Cao, R. Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction. Catal. Commun.2011, 14, 27–31.

    CAS  Google Scholar 

  26. [26]

    Kardanpour, R.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M.; Mohammadpoor-Baltork, I.; Khosropour, A. R.; Zadehahmadi, F. Highly dispersed palladium nanoparticles supported on amino functionalized metal-organic frameworks as an efficient and reusable catalyst for Suzuki cross-coupling reaction. J. Organomet. Chem.2014, 761, 127–133.

    CAS  Google Scholar 

  27. [27]

    Puthiaraj, P.; Ahn, W. S. Highly active palladium nanoparticles immobilized on NH2-MIL-125 as efficient and recyclable catalysts for Suzuki-Miyaura cross coupling reaction. Catal. Commun.2015, 65, 91–95.

    CAS  Google Scholar 

  28. [28]

    Fei, H. H.; Cohen, S. M. A robust, catalytic metal-organic framework with open 2,2’-bipyridine sites. Chem. Commun.2014, 50, 4810–4812.

    CAS  Google Scholar 

  29. [29]

    Nam, D.; Huh, J.; Lee, J.; Kwak, J. H.; Jeong, H. Y.; Choi, K.; Choe, W. Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci.2017, 8, 7765–7771.

    CAS  Google Scholar 

  30. [30]

    Mollick, S.; Fajal, S.; Mukherjee, S.; Ghosh, S. K. Stabilizing metal-organic polyhedra (MOP): Issues and strategies. Chem. Asian J.2019, 14, 3096–3108.

    CAS  Google Scholar 

  31. [31]

    Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev.2016, 45, 2656–2693.

    CAS  Google Scholar 

  32. [32]

    Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem.2010, 2, 893–898.

    Google Scholar 

  33. [33]

    Tranchemontagne, D. J.; Ni, Z.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed.2008, 47, 5136–5147.

    CAS  Google Scholar 

  34. [34]

    Lu, Z.; Knobler, C. B.; Furukawa, H.; Wang, B.; Liu, G. N.; Yaghi, O. M. Synthesis and structure of chemically stable metal-organic polyhedra. J. Am. Chem. Soc.2009, 131, 12532–12533.

    CAS  Google Scholar 

  35. [35]

    Xing, W. H.; Li, H. Y.; Dong, X. Y.; Zang, S. Q. Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture. J. Mater. Chem. A2018, 6, 7724–7730.

    CAS  Google Scholar 

  36. [36]

    Ju, Z. F.; Liu, G. L.; Chen, Y. S.; Yuan, D. Q.; Chen, B. L. From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem.—Eur. J.2017, 23, 4774–4777.

    CAS  Google Scholar 

  37. [37]

    Liu, G. L.; Ju, Z. F.; Yuan, D. Q.; Hong, M. C. In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem.2013, 52, 13815–13817.

    CAS  Google Scholar 

  38. [38]

    Liu, G. L.; Zeller, M.; Su, K. Z.; Pang, J. D.; Ju, Z. F.; Yuan, D. Q.; Hong, M. C. Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem.—Eur. J.2016, 22, 17345–17350.

    CAS  Google Scholar 

  39. [39]

    Lee, H. S.; Jee, S.; Kim, R.; Bui, H. T.; Kim, B.; Kim, J. K.; Park, K. S.; Choi, W.; Kim W.; Choi, K. M. A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci.2020, 13, 519–526

    CAS  Google Scholar 

  40. [40]

    Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano2014, 8, 7451–7457.

    CAS  Google Scholar 

  41. [41]

    Kang, Y. H.; Liu, X. D.; Yan, N.; Jiang, Y.; Liu, X. Q.; Sun, L. B.; Li, J. R. Fabrication of isolated metal-organic polyhedra in confined cavities: Adsorbents/catalysts with unusual dispersity and activity. J. Am. Chem. Soc.2016, 138, 6099–6102.

    CAS  Google Scholar 

  42. [42]

    Lin, W. G.; Yuan, D. Q.; Yakovenko, A.; Zhou, H. C. Surface functionalization of metal-organic polyhedron for homogeneous cyclopropanation catalysis. Chem. Commun.2011, 47, 4968–4970.

    Google Scholar 

  43. [43]

    Vardhan, H.; Verpoort, F. Metal-organic polyhedra: Catalysis and reactive intermediates. Adv. Synth. Catal.2015, 357, 1351–1368.

    CAS  Google Scholar 

  44. [44]

    Maity, K.; Karan, C. K.; Biradha, K. Porous metal-organic polyhedral framework containing cuboctahedron cages as SBUs with high affinity for H2 and CO2 sorption: A heterogeneous catalyst for chemical fixation of CO2. Chem.—Eur. J.2018, 24, 10988–10993.

    CAS  Google Scholar 

  45. [45]

    Ahmad, N.; Younus, H. A.; Chughtai, A. H.; Van Hecke, K.; Danish, M.; Gaoke, Z.; Verpoort, F. Development of mixed metal metal-organic polyhedra networks, colloids, and MOFs and their pharmacokinetic applications. Sci. Rep.2017, 7, 832.

    Google Scholar 

  46. [46]

    Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M. Solvent effects in palladium catalysed cross-coupling reactions. Green Chem.2019, 21, 2164–2213.

    CAS  Google Scholar 

  47. [47]

    Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F. Role of the base and control of selectivity in the Suzuki-Miyaura cross-coupling reaction. ChemCatChem.2014, 6, 1291–1302.

    CAS  Google Scholar 

  48. [48]

    Zhang, H. C.; Kwong, F. Y.; Tian, Y.; Chan, K. S. Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: Synthesis of pyridylphenols. J. Org. Chem.1998, 63, 6886–6890.

    CAS  Google Scholar 

  49. [49]

    Remya, G. S.; Suresh, C. H. Quantification and classification of substituent effects in organic chemistry: A theoretical molecular electrostatic potential study. Phys. Chem. Chem. Phys.2016, 18, 20615–20626.

    CAS  Google Scholar 

  50. [50]

    Littke, A. F.; Dai, C. Y.; Fu, G. C. Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions. J. Am. Chem. Soc.2000, 122, 4020–4028.

    CAS  Google Scholar 

  51. [51]

    Watanabe, T.; Miyaura, N.; Suzuki, A. Synthesis of sterically hindered biaryls via the palladium-catalyzed cross-coupling reaction of arylboronic acids or their esters with haloarenes. Synlett1992, 1992, 207–210.

    Google Scholar 

  52. [52]

    Fournier, J. H.; Maris, T.; Wuest, J. D.; Guo, W. Z.; Galoppini, E. Molecular tectonics. Use of the hydrogen bonding of boronic acids to direct supramolecular construction. J. Am. Chem. Soc.2003, 125, 1002–1006.

    CAS  Google Scholar 

  53. [53]

    Dhakshinamoorthy, A.; Alvaro, M.; Hwang, Y. K.; Seo, Y. K.; Corma, A.; Garcia, H. Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Trans.2011, 40, 10719–10724.

    CAS  Google Scholar 

Download references


This research was supported by the Basic Science Research Program (No. NRF-2019R1A2C4069764) and by Convergent Technology R&D Program for Human Augmentation (No. 2019M3C1B8077549) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

Author information



Corresponding authors

Correspondence to Kyung Min Choi or Dong-Sik Shin.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jee, S., Choi, K.M. et al. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res. (2020).

Download citation


  • metal-organic polyhedra
  • Suzuki-Miyaura cross coupling reaction
  • structure characterization
  • aqueous phase reaction
  • high-degree of dispersion