Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH

Abstract

To accomplish mass hydrogen production by electrochemical water-splitting, it is a necessary to develop robust, highly active, stable, and cost-effective hydrogen evolution reaction (HER) electrocatalysts that perform comparably to Pt in the universal pH range. In this work, cobalt phosphide hybrid nanosheets supported on carbon felt (CoP HNS/CF) are presented, which exhibit the superior electrocatalytic hydrogen production under a universal-pH. In these nanosheets, a single CoP HNS is composed of polycrystalline CoP and oxygen-enriched amorphous Co-O-P phase. Benefiting from its unique nanoarchitecture, as-fabricated CoP HNS/CF exhibits a tremendous electrocatalytic HER activity and outperforms Pt/C as well as state-of-the-art CoP electrocatalysts in universal-pH. In acidic and neutral media, the CoP HNS/CF shows superior electrocatalytic activity while maintaining its original hybrid crystalline-amorphous phase and morphology. In alkaline medium, the unexpected phase and morphological reorganization of CoP HNS/CF results in outstanding electrocatalytic operation. CoP HNS/CF not only achieves high electrocatalytic activity and kinetics, but also a stable and long operating lifetime even under a high current density of 500 mA·cm−2. Furthermore, the fabrication of CoP HNS/CF can be scaled up easily, and the large CoP HNS/CF electrode also exhibits similar electrocatalytic activity and stability.

This is a preview of subscription content, log in to check access.

Change history

  • 02 July 2020

    The contributions of the first two authors were unfortunately misrepresented on the first page and the first page of the ESM.

References

  1. [1]

    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc.2014, 136, 7587–7590.

    CAS  Article  Google Scholar 

  2. [2]

    Zhai, M. K.; Wang, F.; Du, H. B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Appl. Mater. Interfaces2017, 9, 40171–40179.

    CAS  Article  Google Scholar 

  3. [3]

    Wu, K. L.; Chen, Z.; Cheong, W. C.; Liu, S. J.; Zhu, W.; Cao, X.; Sun, K. A.; Lin, Y.; Zheng, L. R.; Yan, W. S. et al. Toward bifunctional overall water splitting electrocatalyst: General preparation of transition metal phosphide nanoparticles decorated N-doped porous carbon spheres. ACS Appl. Mater. Interfaces2018, 10, 44201–44208.

    CAS  Article  Google Scholar 

  4. [4]

    Song, H. J.; Yoon, H.; Ju, B.; Lee, G. H.; Kim, D. W. 3D architectures of quaternary Co-Ni-S-P/graphene hybrids as highly active and stable bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater.2018, 8, 1802319.

    Article  Google Scholar 

  5. [5]

    Tabassum, H.; Guo, W. S.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater.2017, 7, 1601671.

    Article  Google Scholar 

  6. [6]

    Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. F.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci.2016, 9, 1468–1475.

    CAS  Article  Google Scholar 

  7. [7]

    Guha, A.; Vineesh, T. V.; Sekar, A.; Narayanaru, S.; Sahoo, M.; Nayak, S.; Chakraborty, S.; Narayanan, T. N. Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catal.2018, 8, 6636–6644.

    CAS  Article  Google Scholar 

  8. [8]

    Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res.2017, 10, 1010–1020.

    CAS  Article  Google Scholar 

  9. [9]

    Yu, J.; Zhong, Y. J.; Wu, X. H.; Sunarso, J.; Ni, M.; Zhou, W.; Shao, Z. P. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis. Adv. Sci. 2018, 5, 1800514.

    Article  Google Scholar 

  10. [10]

    Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater.2018, 30, 1703322.

    Article  Google Scholar 

  11. [11]

    Cao, H. S.; Xie, Y.; Wang, H. L.; Xiao, F.; Wu, A. P.; Li, L.; Xu, Z. K.; Xiong, N.; Pan, K. Flower-like CoP microballs assembled with (002) facet nanowires via precursor route: Efficient electrocatalysts for hydrogen and oxygen evolution. Electrochim. Acta2018, 259, 830–840.

    CAS  Article  Google Scholar 

  12. [12]

    Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl. Mater. Interfaces2014, 6, 21874–21879.

    CAS  Article  Google Scholar 

  13. [13]

    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci.2015, 8, 3022–3029.

    CAS  Article  Google Scholar 

  14. [14]

    Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci.2015, 8, 1027–1034.

    CAS  Article  Google Scholar 

  15. [15]

    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev.2016, 45, 1529–1541.

    CAS  Article  Google Scholar 

  16. [16]

    Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metalbased carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.

    Article  Google Scholar 

  17. [17]

    Yu, X. W.; Zhang, M.; Tong, Y.; Li, C.; Shi, G Q. A large-scale graphene-bimetal film electrode with an ultrahigh mass catalytic activity for durable water splitting. Adv. Energy Mater.2018, 8, 1800403.

    Article  Google Scholar 

  18. [18]

    Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 14433–14437.

    CAS  Article  Google Scholar 

  19. [19]

    Zhuo, J. Q.; Cabán-Acevedo, M.; Liang, H. F.; Samad, L.; Ding, Q.; Fu, Y. P.; Li, M. X.; Jin, S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal.2015, 5, 6355–6361.

    CAS  Article  Google Scholar 

  20. [20]

    Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A2014, 2, 18593–18599.

    CAS  Article  Google Scholar 

  21. [21]

    Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol.2017, 12, 441–446.

    CAS  Article  Google Scholar 

  22. [22]

    Zhao, G. Q.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale2018, 10, 19074–19081.

    CAS  Article  Google Scholar 

  23. [23]

    Hao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater.2018, 28, 1803291.

    Article  Google Scholar 

  24. [24]

    Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. Highperformance water electrolysis system with double nanostructured superaerophobic electrodes. Small2016, 12, 2492–2498.

    CAS  Article  Google Scholar 

  25. [25]

    Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. In-situ tailoring cobalt nickel molybdenum oxide components for overall watersplitting at high current densities. ChemElectroChem2019, 6, 413–420.

    CAS  Article  Google Scholar 

  26. [26]

    Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B: Environ.2019, 246, 337–348.

    CAS  Article  Google Scholar 

  27. [27]

    Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/ Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy2016, 24, 103–110.

    CAS  Article  Google Scholar 

  28. [28]

    Masikhwa, T. M.; Dangbegnon, J. K.; Bello, A.; Madito, M. J.; Momodu, D.; Barzegar, F.; Manyala, N. Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. J. Phys. Chem. Solids2016, 94, 17–24.

    CAS  Article  Google Scholar 

  29. [29]

    Wang, J. K.; Gao, R.; Zheng, L. R.; Chen, Z. J.; Wu, Z. H.; Sun, L. M.; Hu, Z. B.; Liu, X. F. CoO/CoP heterostructured nanosheets with an O—P interpenetrated interface as a bifunctional electrocatalyst for Na—O2 battery. ACS Catal.2018, 8, 8953–8960.

    CAS  Article  Google Scholar 

  30. [30]

    Li, B. X.; Xie, Y.; Wu, C. Z.; Li, Z. Q.; Zhang, J. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Mater. Chem. Phys.2006, 99, 479–486.

    CAS  Article  Google Scholar 

  31. [31]

    Wang, S. L.; Qian, L. Q.; Xu, H.; Lü, G. L.; Dong, W. J.; Tang, W. H. Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J. Alloy Compd.2009, 476, 739–743.

    CAS  Article  Google Scholar 

  32. [32]

    Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale2014, 6, 12195–12216.

    CAS  Article  Google Scholar 

  33. [33]

    Wang, T. T.; Wu, L. Q.; Xu, X. B.; Sun, Y.; Wang, Y. Q.; Zhong, W.; Du, Y. W. An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Sci. Rep.2017, 7, 11891.

    Article  Google Scholar 

  34. [34]

    Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Article  Google Scholar 

  35. [35]

    Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater.2017, 7, 1700020.

    Article  Google Scholar 

  36. [36]

    Xie, X. H.; Song, M.; Wang, L. G.; Engelhard, M. H.; Luo, L. L.; Miller, A.; Zhang, Y. Y.; Du, L.; Pan, H. L.; Nie, Z. M. et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dualphase synergy. ACS Catal.2019, 9, 8712–8718.

    CAS  Article  Google Scholar 

  37. [37]

    Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater.2012, 11, 550–557.

    CAS  Article  Google Scholar 

  38. [38]

    Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci.2018, 11, 2858–2864.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, South Korea (No. 2016M3A7B4909318). We thank the Korea Basic Science Institute (KBSI) for the technical support. Microstructural images were obtained using a Hitachi SU-70 scanning electron microscope at the KBSI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Wan Kim.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Song, H.J., Ju, B. et al. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2881-y

Download citation

Keywords

  • cobalt phosphide
  • self-supporting
  • electrocatalyst
  • hydrogen evolution reaction
  • universal-pH
  • large-scale