Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine

Abstract

Nitrogen fixation is a vital process for both nature and industry. Whereas the nitrogenase can reduce nitrogen in ambient environment in nature, the industrialized Haber-Bosch process is a high temperature and high-pressure process. Since the discovery of the first dinitrogen complex in 1965, many dinitrogen complexes are prepared in a homogeneous solution to mimic the nitrogenase enzyme in nature. However, studies of the heterogeneous process on surface are rarely addressed. Moreover, molecular scale characterization for such dinitrogen complex is lacking. Here, we present a simple model system to investigate, at the single-molecule level, the binding of dinitrogen on a surface confined iron phthalocyanine (FePc) monolayer through the combination of in-situ low-temperature scanning tunneling microscopy (LT-STM) and X-ray photoelectron spectroscopy (XPS) measurements. The iron center in FePc molecule deposited on Au(111) and highly oriented pyrolytic graphite (HOPG) surface can adsorb dinitrogen molecule at room temperature and low pressure. A comparative study reveals that the adsorption behaviors of FePc on these two different substrates are identical. Chemical bond is formed between the dinitrogen and the Fe atom in the FePc molecule, which greatly modifies the electronic structure of FePc. The bonding is reversible and can be manipulated by applying bias using a STM tip or by thermal annealing.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Avenier, P.; Taoufik, M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.; Basset, J. M.; Eisenstein, O.; Emsley, L. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science2007, 317, 1056–1060.

    CAS  Article  Google Scholar 

  2. [2]

    Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev.1996, 96, 2965–2982.

    CAS  Article  Google Scholar 

  3. [3]

    Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science2011, 334, 780–783.

    CAS  Article  Google Scholar 

  4. [4]

    Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science2014, 345, 610.

    CAS  Article  Google Scholar 

  5. [5]

    Bazhenova, T. A.; Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev.1995, 144, 69–145.

    CAS  Article  Google Scholar 

  6. [6]

    Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev.2014, 43, 547–564.

    CAS  Article  Google Scholar 

  7. [7]

    Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed.2003, 42, 2004–2008.

    Article  CAS  Google Scholar 

  8. [8]

    Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science2005, 307, 555–558.

    CAS  Article  Google Scholar 

  9. [9]

    Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed.2008, 47, 3524–3535.

    CAS  Article  Google Scholar 

  10. [10]

    Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem2015, 8, 2180–2186.

    CAS  Article  Google Scholar 

  11. [11]

    Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber-Bosch process revisited: On the real structure and stability of “Ammonia Iron” under working conditions. Angew. Chem., Int. Ed.2013, 52, 12723–12726.

    CAS  Article  Google Scholar 

  12. [12]

    van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev.2014, 43, 5183–5191.

    CAS  Article  Google Scholar 

  13. [13]

    Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Nitrogenase: A draft mechanism. Acc. Chem. Res.2013, 46, 587–595.

    CAS  Article  Google Scholar 

  14. [14]

    Howard, J. B.; Rees, D. C. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. USA2006, 103, 17088–17093.

    CAS  Article  Google Scholar 

  15. [15]

    Schrock, R. R. Reduction of dinitrogen. Proc. Natl. Acad. Sci. USA2006, 103, 17087.

    CAS  Article  Google Scholar 

  16. [16]

    Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Nitrogenase MoFe-Protein at 1.16 Å resolution: A central ligand in the FeMo-Cofactor. Science2002, 297, 1696–1700.

    CAS  Article  Google Scholar 

  17. [17]

    Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal.2018, 1, 490–500.

    Article  Google Scholar 

  18. [18]

    Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science2003, 301, 76–78.

    CAS  Article  Google Scholar 

  19. [19]

    Shima, T.; Hu, S. W.; Luo, G.; Kang, X. H.; Luo, Y.; Hou, Z. M. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science2013, 340, 1549–1552.

    CAS  Article  Google Scholar 

  20. [20]

    Spencer, L. P.; MacKay, B. A.; Patrick, B. O.; Fryzuk, M. D. Inner-sphere two-electron reduction leads to cleavage and functionalization of coordinated dinitrogen. Proc. Natl. Acad. Sci. USA2006, 103, 17094–17098.

    CAS  Article  Google Scholar 

  21. [21]

    Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIV N, and related species. Proc. Natl. Acad. Sci. USA2006, 103, 17107–17112.

    CAS  Article  Google Scholar 

  22. [22]

    Leigh, G. J. So that’s how it’s done—Maybe. Science2003, 301, 55–56.

    CAS  Article  Google Scholar 

  23. [23]

    Fryzuk, M. D. More can be better in N2 activation. Science2013, 340, 1530–1531.

    CAS  Article  Google Scholar 

  24. [24]

    Fryzuk, M. D. N2 coordination. Chem. Commun.2013, 49, 4866–4868.

    CAS  Article  Google Scholar 

  25. [25]

    Fryzuk, M. D. Side-on end-on bound dinitrogen: An activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res.2009, 42, 127–133.

    CAS  Article  Google Scholar 

  26. [26]

    Akagi, F.; Matsuo, T.; Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: Formation of a nitride and its conversion into imide species. Angew. Chem., Int. Ed.2007, 46, 8778–8781.

    CAS  Article  Google Scholar 

  27. [27]

    Sivasankar, C.; Baskaran, S.; Tamizmani, M.; Ramakrishna, K. Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. J. Organomet. Chem.2014, 752, 44–58.

    CAS  Article  Google Scholar 

  28. [28]

    Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev.2013, 257, 2551–2564.

    CAS  Article  Google Scholar 

  29. [29]

    Crossland, J. L.; Tyler, D. R. Iron-dinitrogen coordination chemistry: Dinitrogen activation and reactivity. Coord. Chem. Rev.2010, 254, 1883–1894.

    CAS  Article  Google Scholar 

  30. [30]

    Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature2004, 427, 527–530.

    CAS  Article  Google Scholar 

  31. [31]

    Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev.2010, 39, 4044–4056.

    CAS  Article  Google Scholar 

  32. [32]

    MacLeod, K. C.; Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Commun.2013, 5, 559–565.

    CAS  Google Scholar 

  33. [33]

    MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry: On the biomimetic borderlands. Chem. Rev.2004, 104, 385–402.

    CAS  Article  Google Scholar 

  34. [34]

    Gambarotta, S.; Scott, J. Multimetallic cooperative activation of N2. Angew. Chem., Int. Ed.2004, 43, 5298–5308.

    CAS  Article  Google Scholar 

  35. [35]

    Connor, G. P.; Holland, P. L. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal. Today2017, 286, 21–40.

    CAS  Article  Google Scholar 

  36. [36]

    Burford, R. J.; Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem.2017, 1, 0026.

    CAS  Article  Google Scholar 

  37. [37]

    Hieringer, W.; Flechtner, K.; Kretschmann, A.; Seufert, K.; Auwärter, W.; Barth, J. V.; Görling, A.; Steinrück, H. P.; Gottfried, J. M. The surface trans effect: Influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc.2011, 133, 6206–6222.

    CAS  Article  Google Scholar 

  38. [38]

    Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano2016, 10, 8746–8750.

    CAS  Article  Google Scholar 

  39. [39]

    Zhang, J. L.; Wang, Z. Z.; Zhong, J. Q.; Yuan, K. D.; Shen, Q.; Xu, L. L.; Niu, T. C.; Gu, C. D.; Wright, C. A.; Tadich, A. et al. Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. Nano Lett.2015, 15, 3181–3188.

    CAS  Article  Google Scholar 

  40. [40]

    Kim, H.; Chang, Y. H.; Jang, W. J.; Lee, E. S.; Kim, Y. H.; Kahng, S. J. Probing single-molecule dissociations from a bimolecular complex NO-Co-porphyrin. ACS Nano2015, 9, 7722–7728.

    CAS  Article  Google Scholar 

  41. [41]

    Chang, M. H.; Chang, Y. H.; Kim, N. Y.; Kim, H.; Lee, S. H.; Choi, M. S.; Kim, Y. H.; Kahng, S. J. Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding. Phys. Rev. B2019, 100, 245406.

    CAS  Article  Google Scholar 

  42. [42]

    Ma, X. F.; Chen, H. Z.; Shi, M. M.; Wu, G.; Wang, M.; Huang, J. High gas-sensitivity and selectivity of fluorinated zinc phthalocyanine film to some non-oxidizing gases at room temperature. Thin Solid Films2005, 489, 257–261.

    CAS  Article  Google Scholar 

  43. [43]

    Newton, M. I.; Starke, T. K. H.; Willis, M. R.; McHale, G. NO2 detection at room temperature with copper phthalocyanine thin film devices. Sens. Actuators B: Chem.2000, 67, 307–311.

    CAS  Article  Google Scholar 

  44. [44]

    Ho, K. C.; Tsou, Y. H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. Sens. Actuators: B Chem.2001, 77, 253–259.

    CAS  Article  Google Scholar 

  45. [45]

    Isvoranu, C.; Wang, B.; Ataman, E.; Knudsen, J.; Schulte, K.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Comparison of the carbonyl and nitrosyl complexes formed by adsorption of CO and NO on monolayers of iron phthalocyanine on Au(111). J. Phys. Chem. C2011, 115, 24718–24727.

    CAS  Article  Google Scholar 

  46. [46]

    Dubey, M.; Bernasek, S. L.; Schwartz, J. Highly sensitive nitric oxide detection using X-ray photoelectron spectroscopy. J. Am. Chem. Soc.2007, 129, 6980–6981.

    CAS  Article  Google Scholar 

  47. [47]

    Praneeth, V. K. K.; Paulat, F.; Berto, T. C.; George, S. D.; Näther, C.; Sulok, C. D.; Lehnert, N. Electronic structure of six-coordinate iron(III)–porphyrin NO adducts: The elusive iron(III)–NO(radical) state and its influence on the properties of these complexes. J. Am. Chem. Soc.2008, 130, 15288–15303.

    CAS  Article  Google Scholar 

  48. [48]

    Strózecka, A.; Soriano, M.; Pascual, J. I.; Palacios, J. J. Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. Phys. Rev. Lett.2012, 109, 147202.

    Article  CAS  Google Scholar 

  49. [49]

    Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C2011, 115, 20201–20208.

    CAS  Article  Google Scholar 

  50. [50]

    Cheng, Z. H.; Gao, L.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; He, X. B.; Du, S. X.; Gao, H. J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C2007, 111, 2656–2660.

    CAS  Article  Google Scholar 

  51. [51]

    Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C2011, 115, 21750–21754.

    CAS  Article  Google Scholar 

  52. [52]

    Deimel, P. S.; Bababrik, R. M.; Wang, B.; Blowey, P. J.; Rochford, L. A.; Thakur, P. K.; Lee, T. L.; Bocquet, M. L.; Barth, J. V.; Woodruff, D. P. et al. Direct quantitative identification of the “surface trans-effect”. Chem. Sci.2016, 7, 5647–5656.

    CAS  Article  Google Scholar 

  53. [53]

    Flechtner, K.; Kretschmann, A.; Steinrück, H. P.; Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc.2007, 129, 12110–12111.

    CAS  Article  Google Scholar 

  54. [54]

    Murphy, B. E.; Krasnikov, S. A.; Sergeeva, N. N.; Cafolla, A. A.; Preobrajenski, A. B.; Chaika, A. N.; Lübben, O.; Shvets, I. V. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano2014, 8, 5190–5198.

    CAS  Article  Google Scholar 

  55. [55]

    Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate–substrate coupling and molecular spin. J. Chem. Phys.2011, 134, 114710.

    Article  CAS  Google Scholar 

  56. [56]

    Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C2007, 111, 9240–9244.

    CAS  Article  Google Scholar 

  57. [57]

    Massimi, L.; Angelucci, M.; Gargiani, P.; Betti, M. G.; Montoro, S.; Mariani, C. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy. J. Chem. Phys.2014, 140, 244704.

    Article  CAS  Google Scholar 

  58. [58]

    Bai, Y.; Sekita, M.; Schmid, M.; Bischof, T.; Steinrück, H. P.; Gottfried, J. M. Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetraphenylporphyrin monolayers on Au(111). Phys. Chem. Chem. Phys.2010, 12, 4336–4344.

    CAS  Article  Google Scholar 

  59. [59]

    Schmid, M.; Zirzlmeier, J.; Steinrück, H. P.; Gottfried, J. M. Interfacial interactions of Iron(II) tetrapyrrole complexes on Au(111). J. Phys. Chem. C2011, 115, 17028–17035.

    CAS  Article  Google Scholar 

  60. [60]

    Isvoranu, C.; Wang, B.; Schulte, K.; Ataman, E.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Tuning the spin state of iron phthalocyanine by ligand adsorption. J. Phys.: Condens. Matter2010, 22, 472002.

    CAS  Google Scholar 

  61. [61]

    Hartley, F. R. The cis- and trans-effects of ligands. Chem. Soc. Rev.1973, 2, 163–179.

    CAS  Article  Google Scholar 

  62. [62]

    Walzer, K.; Hietschold, M. STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG(0001) and Au(111). Surf. Sci.2001, 471, 1–10.

    CAS  Article  Google Scholar 

  63. [63]

    Isvoranu, C.; Åhlund, J.; Wang, B.; Ataman, E.; Mårtensson, N.; Puglia, C.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Electron spectroscopy study of the initial stages of iron phthalocyanine growth on highly oriented pyrolitic graphite. J. Chem. Phys.2009, 131, 214709.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from Singapore National Research Foundation under NRF2017NRF-NSFC001-007, Singapore MOE grant of MOE2019-T2-1-002 and NUS Flagship Green Energy Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jia Lin Zhang or Wei Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Zhang, J.L., Zhong, J.Q. et al. Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2863-0

Download citation

Keywords

  • single-molecule
  • dinitrogen
  • iron phthalocyanine
  • axial coordination