Ferromagnetic and ferroelectric two-dimensional materials for memory application

Abstract

The discoveries of ferromagnetic and ferroelectric two-dimensional (2D) materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories. This review focuses on the latest 2D ferromagnetic and ferroelectric materials that have been most recently studied, including insulating ferromagnetic, metallic ferromagnetic, antiferromagnetic and ferroelectric 2D materials. The fundamental properties that lead to the long-range magnetic orders of 2D materials are discussed. The low Curie temperature ( Tc) and instability in 2D systems limits their use in practical applications, and several strategies to address this constraint are proposed, such as gating and composition stoichiometry. A van der Waals (vdW) heterostructure comprising 2D ferromagnetic and ferroelectric materials will open a door to exploring exotic physical phenomena and achieve multifunctional or nonvolatile devices.

This is a preview of subscription content, log in to check access.

Reference

  1. [1]

    Peierls, R. Quelques propriétés typiques des corps solides. Ann. I. H. Poincaré. 1935, 5, 177–222.

    Google Scholar 

  2. [2]

    Landau, L. D. Zur theorie der phasenumwandlungen II. Phys. Z. Sowjet.1937, 11, 26–35.

    CAS  Google Scholar 

  3. [3]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    CAS  Article  Google Scholar 

  4. [4]

    Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett.1966, 17, 1133–1136.

    CAS  Article  Google Scholar 

  5. [5]

    Mermin, N. D. Crystalline order in two dimensions. Phys. Rev.1968, 176, 250–254.

    Article  Google Scholar 

  6. [6]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Article  Google Scholar 

  7. [7]

    Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol.2015, 10, 765–769.

    CAS  Article  Google Scholar 

  8. [8]

    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Article  CAS  Google Scholar 

  9. [9]

    Fatemi, V.; Wu, S. F.; Cao, Y.; Bretheau, L.; Gibson, Q. D.; Watanabe, K.; Taniguchi, T.; Cava, R. J.; Jarillo-Herrero, P. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science2018, 362, 926–929.

    CAS  Article  Google Scholar 

  10. [10]

    Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett.2018, 18, 1253–1258.

    CAS  Article  Google Scholar 

  11. [11]

    Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y. J.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett.2017, 17, 5508–5513.

    CAS  Article  Google Scholar 

  12. [12]

    Yuan, S. G.; Luo, X.; Chan, H. L.; Xiao, C. C.; Dai, Y. W.; Xie, M. H.; Hao, J. H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun.2019, 10, 1775.

    Article  CAS  Google Scholar 

  13. [13]

    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature2017, 546, 270–273.

    CAS  Article  Google Scholar 

  14. [14]

    Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature2017, 546, 265–269.

    CAS  Article  Google Scholar 

  15. [15]

    Dillon, J. F., Jr.; Kamimura, H.; Remeika, J. P. Magneto-optical properties of ferromagnetic chromium trihalides. J. Phys. Chem. Solids1966, 27, 1531–1549.

    CAS  Article  Google Scholar 

  16. [16]

    Suits, J. Faraday and kerr effects in magnetic compounds. IEEE Trans. Magn.1972, 8, 95–105.

    CAS  Article  Google Scholar 

  17. [17]

    Zhang, J.; Soon, J. M.; Loh, K. P.; Yin, J. H.; Ding, J.; Sullivian, M. B.; Wu, P. Magnetic molybdenum disulfide nanosheet films. Nano Lett.2007, 7, 2370–2376.

    CAS  Article  Google Scholar 

  18. [18]

    Botello-Méndez, A. R.; López-Urías, F.; Terrones, M.; Terrones, H. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology2009, 20, 325703.

    Article  CAS  Google Scholar 

  19. [19]

    Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 Nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc.2008, 130, 16739–16744.

    CAS  Article  Google Scholar 

  20. [20]

    Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C2011, 115, 13303–13311.

    CAS  Article  Google Scholar 

  21. [21]

    Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B2013, 87, 195201.

    Article  CAS  Google Scholar 

  22. [22]

    Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett.2015, 15, 6586–6591.

    CAS  Article  Google Scholar 

  23. [23]

    Kochat, V.; Apte, A.; Hachtel, J. A.; Kumazoe, H.; Krishnamoorthy, A.; Susarla, S.; Idrobo, J. C.; Shimojo, F.; Vashishta, P.; Kalia, R. et al. Redoping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater.2017, 29, 1703754.

    Article  CAS  Google Scholar 

  24. [24]

    Zhao, P. J; Zheng, J. M.; Guo, P.; Jiang, Z. Y.; Cao, L. K.; Wan, Y. Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study. Comp. Mater. Sci.2017, 128, 287–293.

    CAS  Article  Google Scholar 

  25. [25]

    Hu, A. M.; Wang, L. L.; Xiao, W. Z.; Xiao, G.; Rong, Q. Y. Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer. Comp. Mater. Sci.2015, 107, 72–78.

    CAS  Article  Google Scholar 

  26. [26]

    Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys. Rev. B2013, 88, 205305.

    Article  CAS  Google Scholar 

  27. [27]

    Kuo, C. T.; Neumann, M.; Balamurugan, K.; Park, H. J.; Kang, S.; Shiu, H. W.; Kang, J. H.; Hong, B. H.; Han, M.; Noh, T. W. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep.2016, 6, 20904.

    CAS  Article  Google Scholar 

  28. [28]

    Du, K. Z.; Wang, X. Z.; Liu, Y.; Hu, P.; Utama, M. I.B.; Gan, C. K.; Xiong, Q. H.; Kloc, C. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano2016, 10, 1738–1743.

    CAS  Article  Google Scholar 

  29. [29]

    Lee, J. U.; Lee, S.; Ryoo, J. H.; Kang, S.; Kim, T. Y.; Kim, P.; Park, C. H.; Park, J. G.; Cheong, H. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett.2016, 16, 7433–7438.

    CAS  Article  Google Scholar 

  30. [30]

    Lin, M. W.; Zhuang, H. L.; Yan, J. Q.; Ward, T. Z.; Puretzky, A. A.; Rouleau, C. M.; Gai, Z.; Liang, L. B.; Meunier, V.; Sumpter, B. G. et al. Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C2016, 4, 315–322.

    CAS  Article  Google Scholar 

  31. [31]

    Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature2018, 563, 94–99.

    CAS  Article  Google Scholar 

  32. [32]

    Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol.2018, 13, 289–293.

    CAS  Article  Google Scholar 

  33. [33]

    O'Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett.2018, 18, 3125–3131.

    CAS  Article  Google Scholar 

  34. [34]

    Zhuang, H. L.; Hennig, R. G. Stability and magnetism of strongly correlated single-layer VS2. Phys. Rev. B2016, 93, 054429.

    Article  CAS  Google Scholar 

  35. [35]

    Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys.2014, 16, 4990–4994.

    CAS  Article  Google Scholar 

  36. [36]

    Sivadas, N.; Daniels, M. W.; Swendsen, R. H.; Okamoto, S.; Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B2015, 91, 235425.

    Article  CAS  Google Scholar 

  37. [37]

    Zhuang, H. L.; Xie, Y.; Kent, P. R.C.; Ganesh, P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B2015, 92, 035407.

    Article  CAS  Google Scholar 

  38. [38]

    Zhang, W. B.; Qu, Q.; Zhu, P.; Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C2015, 3, 12457–12468.

    CAS  Article  Google Scholar 

  39. [39]

    He, J. J.; Ma, S. Y.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C2016, 4, 2518–2526.

    CAS  Article  Google Scholar 

  40. [40]

    Sun, Q. L.; Kioussis, N. Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B2018, 97, 094408.

    CAS  Article  Google Scholar 

  41. [41]

    Huang, C. X.; Zhou, J.; Wu, H. P.; Deng, K. M.; Jena, P.; Kan, E. J. Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys. Rev. B2017, 95, 045113.

    Article  Google Scholar 

  42. [42]

    Kumar, H.; Frey, N. C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Tunable magnetism and transport properties in nitride MXenes. ACS Nano2017, 11, 7648–7655.

    CAS  Article  Google Scholar 

  43. [43]

    He, J. J.; Lyu, P.; Nachtigall, P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C2016, 4, 11143–11149.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang, Y. Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C. T.; Ramakrishna, S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules2006, 7, 1049–1057.

    CAS  Article  Google Scholar 

  45. [45]

    Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater.2013, 23, 2185–2192.

    CAS  Article  Google Scholar 

  46. [46]

    Yue, Y. L. Fe2C monolayer: An intrinsic ferromagnetic MXene. J. Magn. Magn. Mater.2017, 434, 164–168.

    CAS  Article  Google Scholar 

  47. [47]

    Sun, Y. J.; Zhuo, Z. W.; Wu, X. J.; Yang, J. L. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano Lett.2017, 17, 2771–2777.

    CAS  Article  Google Scholar 

  48. [48]

    Zhao, T. S.; Zhou, J.; Wang, Q.; Kawazoe, Y.; Jena, P. Ferromagnetic and half-metallic FeC2 monolayer containing C2 dimers. ACS Appl. Mater. Interfaces2016, 8, 26207–26212.

    CAS  Article  Google Scholar 

  49. [49]

    Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett.2013, 4, 3382–3386.

    CAS  Article  Google Scholar 

  50. [50]

    Wu, J. C.; Peng, X.; Guo, Y. Q.; Zhou, H. D.; Zhao, J. Y.; Ruan, K. Q.; Chu, W. S.; Wu, C. Z. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys.2018, 13, 138110.

    Article  Google Scholar 

  51. [51]

    Zhang, K.; Khan, R.; Guo, H. Y.; Ali, I.; Li, X. L.; Lin, Y. X.; Chen, H. P.; Yan, W. S.; Wu, X. J.; Song, L. Room-temperature ferromagnetism in the two-dimensional layered Cu2MoS4 nanosheets. Phys. Chem. Chem. Phys.2017, 19, 1735–1739.

    CAS  Article  Google Scholar 

  52. [52]

    Sachs, B.; Wehling, T. O.; Novoselov, K. S.; Lichtenstein, A. I.; Katsnelson, M. I. Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B2013, 88, 201402.

    Article  CAS  Google Scholar 

  53. [53]

    Zhang, S. H.; Li, Y. W.; Zhao, T. S.; Wang, Q. Robust ferromagnetism in monolayer chromium nitride. Sci. Rep.2014, 4, 5241.

    CAS  Article  Google Scholar 

  54. [54]

    Zhang, Y.; Pang, J. M.; Zhang, M. G.; Gu, X.; Huang, L. Two-dimensional Co2S2 monolayer with robust ferromagnetism. Sci. Rep.2017, 7, 15993.

    Article  CAS  Google Scholar 

  55. [55]

    Naber, R. C. G.; Tanase, C.; Blom, P. W.M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater.2005, 4, 243–248.

    CAS  Article  Google Scholar 

  56. [56]

    Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Lu, H. B.; Yang, G. Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater.2011, 23, 1277–1281.

    CAS  Article  Google Scholar 

  57. [57]

    Naber, R. C. G.; Asadi, K.; Blom, P. W.M.; De Leeuw, D. M.; De Boer, B. Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater.2010, 22, 933–945.

    CAS  Article  Google Scholar 

  58. [58]

    Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater.2009, 21, 2463–2485.

    CAS  Article  Google Scholar 

  59. [59]

    Scott, J. F. Applications of modern ferroelectrics. Science2007, 315, 954–959.

    CAS  Article  Google Scholar 

  60. [60]

    Valasek, J. Piezo-electric and allied phenomena in rochelle salt. Phys. Rev.1921, 17, 475–481.

    CAS  Article  Google Scholar 

  61. [61]

    Fong, D. D.; Stephenson, G. B.; Streiffer, S. K.; Eastman, J. A.; Auciello, O.; Fuoss, P. H.; Thompson, C. Ferroelectricity in ultrathin perovskite films. Science2004, 304, 1650–1653.

    CAS  Article  Google Scholar 

  62. [62]

    Tsymbal, E. Y.; Kohlstedt, H. Tunneling across a ferroelectric. Science2006, 313, 181–183.

    CAS  Article  Google Scholar 

  63. [63]

    Zhong, W. L.; Wang, Y. G.; Zhang, P. L.; Qu, B. D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B1994, 50, 698–703.

    CAS  Article  Google Scholar 

  64. [64]

    Junquera, J.; Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature2003, 422, 506–509.

    CAS  Article  Google Scholar 

  65. [65]

    Gruverman, A.; Wu, D.; Lu, H.; Wang, Y.; Jang, H. W.; Folkman, C. M.; Zhuravlev, M. Y.; Felker, D.; Rzchowski, M.; Eom, C. B. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett.2009, 9, 3539–3543.

    CAS  Article  Google Scholar 

  66. [66]

    Wang, H.; Liu, Z. R.; Yoong, H. Y.; Paudel, T. R.; Xiao, J. X.; Guo, R.; Lin, W. N.; Yang, P.; Wang, J.; Chow, G. M. et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun.2018, 9, 3319.

    CAS  Article  Google Scholar 

  67. [67]

    Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett.2011, 99, 102903.

    Article  CAS  Google Scholar 

  68. [68]

    Müller, J.; Böscke, T. S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett.2012, 12, 4318–4323.

    Article  CAS  Google Scholar 

  69. [69]

    Shirodkar, S. N.; Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett.2014, 112, 157601.

    Article  CAS  Google Scholar 

  70. [70]

    Bruyer, E.; Di Sante, D.; Barone, P.; Stroppa, A.; Whangbo, M. H.; Picozzi, S. Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Phys. Rev. B2016, 94, 195402.

    Article  Google Scholar 

  71. [71]

    Yang, Q.; Wu, M. H.; Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett.2018, 9, 7160–7164.

    CAS  Article  Google Scholar 

  72. [72]

    Liu, C.; Wan, W. H.; Ma, J.; Guo, W.; Yao, Y. G. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale2018, 10, 7984–7990.

    CAS  Article  Google Scholar 

  73. [73]

    Li, L.; Wu, M. H. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano2017, 11, 6382–6388.

    CAS  Article  Google Scholar 

  74. [74]

    Xu, B.; Xiang, H.; Xia, Y. D.; Jiang, K.; Wan, X. G.; He, J.; Yin, J.; Liu, Z. G. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale2017, 9, 8427–8434.

    CAS  Article  Google Scholar 

  75. [75]

    Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun.2016, 7, 12357.

    CAS  Article  Google Scholar 

  76. [76]

    Song, W. S.; Fei, R. X.; Yang, L. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer. Phys. Rev. B2017, 96, 235420.

    Article  Google Scholar 

  77. [77]

    Guan, S.; Liu, C.; Lu, Y.; Yao, Y.; Yang, S. A. Tunable ferroelectricity and anisotropic electric transport in monolayer ß-GeSe. Phys. Rev. B2018, 97, 144104.

    Article  Google Scholar 

  78. [78]

    Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater.2017, 4, 015042.

    Article  Google Scholar 

  79. [79]

    Wan, W. H.; Liu, C; Xiao, W. D.; Yao, Y. G Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl. Phys. Lett.2017, 111, 132904.

    Article  CAS  Google Scholar 

  80. [80]

    Zhang, X. L.; Yang, Z. X.; Chen, Y. Novel two-dimensional ferroelectric PbTe under tension: A first-principles prediction. J. Appl. Phys.2017, 122, 064101.

    Article  CAS  Google Scholar 

  81. [81]

    Xiao, C. C; Wang, F.; Yang, S. A.; Lu, Y. H.; Feng, Y. P.; Zhang, S. B. Elemental ferroelectricity and antiferroelectricity in group-V monolayer. Adv. Funct. Mater.2018, 28, 1707383.

    Article  CAS  Google Scholar 

  82. [82]

    Wang, Y.C.C; Chen, M. G; Hua, C. Q.; Zou, J. D.; Wu, C; Jiang, J. Z.; Yang, S. A.; Lu, Y. H.; Ji, W. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater. Horiz.2018, 5, 521–528.

    Article  Google Scholar 

  83. [83]

    Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature2018, 560, 336–339.

    CAS  Article  Google Scholar 

  84. [84]

    Zheng, C. X.; Yu, L.; Zhu, L.; Collins, J. L.; Kim, D.; Lou, Y D.; Xu, C; Li, M.; Wei, Z.; Zhang, Y. P. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv.2018, 4, 7720.

    Article  CAS  Google Scholar 

  85. [85]

    Chang, K.; Liu, J. W.; Lin, H. C; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science2016, 353, 274–278.

    CAS  Article  Google Scholar 

  86. [86]

    Belianinov, A.; He, Q.; Dziaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A; Morozovska, A; Banys, J.; Vysochanskii, Y; Kalinin, S. V. CuInP2S6 room temperature layered ferroelectric. Nano Lett.2015, 15, 3808–3814.

    CAS  Article  Google Scholar 

  87. [87]

    You, L.; Liu, F. C; Li, H. S.; Hu, Y Z.; Zhou, S.; Chang, L.; Zhou, Y; Fu, Q. D.; Yuan, G L.; Dong, S. et al. In-plane ferroelectricity in thin flakes of van der Waals hybrid perovskite. Adv. Mater.2018, 30, 1803249.

    Article  CAS  Google Scholar 

  88. [88]

    McGuire, M. A.; Dixit, H; Cooper, V. R.; Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater.2015, 27, 612–620.

    CAS  Article  Google Scholar 

  89. [89]

    Seyler, K. L.; Zhong, D.; Klein, D. R.; Gao, S. Y; Zhang, X. O.; Huang, B.; Navarro-Moratalla, E.; Yang, L.; Cobden, D. H.; McGuire, M. A. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys.2018, 14, 277–281.

    CAS  Article  Google Scholar 

  90. [90]

    Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science2018, 360, 1218–1222.

    CAS  Article  Google Scholar 

  91. [91]

    Djurdjić Mijin, S.; Šolajić, A.; Pešić, J.; Šćepanović, M.; Liu, Y; Baum, A; Petrovic, C; Lazarević, N; Popović, Z. V. Lattice dynamics and phase transition in CrI3 single crystals. Phys. Rev. B2018, 98, 104307.

    Article  Google Scholar 

  92. [92]

    Sun, Z. Y; Yi, Y F.; Song, T. C; Clark, G; Huang, B.; Shan, Y. W.; Wu, S.; Huang, D.; Gao, C. L.; Chen, Z. H. et al. Gant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature2019, 572, 497–501.

    CAS  Article  Google Scholar 

  93. [93]

    Klein, D. R.; MacNeill, D.; Song, Q.; Larson, D. T.; Fang, S.; Xu, M. Y; Ribeiro, R. A.; Canfield, P. C; Kaxiras, E.; Comin, R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys.2019, 15, 1255–1260.

    CAS  Article  Google Scholar 

  94. [94]

    Sivadas, N.; Okamoto, S.; Xu, X. D.; Fennie, C. J.; Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett.2018, 18, 7658–7664.

    CAS  Article  Google Scholar 

  95. [95]

    Guo, K.; Deng, B. W.; Liu, Z.; Gao, C. F; Shi, Z. T.; Bi, L.; Zhang, L.; Lu, H. P.; Zhou, P. H.; Zhang, L. B. et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3. Sci. China Mater.2020, 63, 413–420.

    CAS  Article  Google Scholar 

  96. [96]

    Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol.2018, 13, 544–548.

    CAS  Article  Google Scholar 

  97. [97]

    Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol.2018, 13, 549–553.

    CAS  Article  Google Scholar 

  98. [98]

    Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater.2019, 18, 1303–1308.

    CAS  Article  Google Scholar 

  99. [99]

    Song, T. C.; Fei, Z. Y.; Yankowitz, M.; Lin, Z.; Jiang, Q. N.; Hwangbo, K.; Zhang, Q.; Sun, B. S.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater.2019, 18, 1298–1302.

    CAS  Article  Google Scholar 

  100. [100]

    Xing, W.Y.; Chen, Y. Y.; Odenthal, P. M.; Zhang, X.; Yuan, W.; Su, T.; Song, Q.; Wang, T. Y.; Zhong, J. N.; Jia, S. et al. Electric field effect in multilayer Cr2Ge2Te 6: A ferromagnetic 2D material. 2D Mater. 2017, 4, 024009.

    Article  CAS  Google Scholar 

  101. [101]

    Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol.2018, 13, 554–559.

    CAS  Article  Google Scholar 

  102. [102]

    Lohmann, M.; Su, T.; Niu, B.; Hou, Y. S.; Alghamdi, M.; Aldosary, M.; Xing, W. Y.; Zhong, J. N.; Jia, S.; Han, W. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous hall effect in Pt. Nano Lett.2019, 19, 2397–2403.

    CAS  Article  Google Scholar 

  103. [103]

    Tian, Y.; Gary, M. J.; Ji, H. W.; Cava, R. J.; Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 2016, 3, 025035.

    Article  CAS  Google Scholar 

  104. [104]

    Deiseroth, H. J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—Two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem.2006, 2006, 1561–1567.

    Article  CAS  Google Scholar 

  105. [105]

    Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater.2018, 17, 778–782.

    CAS  Article  Google Scholar 

  106. [106]

    Liu, S. S.; Yuan, X.; Zou, Y. C.; Sheng, Y.; Huang, C.; Zhang, E. Z.; Ling, J. W.; Liu, Y. W.; Wang, W. Y.; Zhang, C. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl.2017, 1, 30.

    Article  CAS  Google Scholar 

  107. [107]

    Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun.2018, 9, 1554.

    Article  CAS  Google Scholar 

  108. [108]

    Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol.2016, 11, 231–241.

    CAS  Article  Google Scholar 

  109. [109]

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys.2018, 90, 015005.

    CAS  Article  Google Scholar 

  110. [110]

    Wiedenmann, A.; Rossat-Mignod, J.; Louisy, A.; Brec, R.; Rouxel, J. Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun.1981, 40, 1067–1072.

    CAS  Article  Google Scholar 

  111. [111]

    Joy, P. A.; Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B1992, 46, 5425–5433.

    CAS  Article  Google Scholar 

  112. [112]

    Taylor, B.; Steger, J.; Wold, A.; Kostiner, E. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg. Chem.1974, 13, 2719–2721.

    CAS  Article  Google Scholar 

  113. [113]

    Wang, X. Z.; Du, K. Z.; Liu, F. Y.Y.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P. et al. Raman spectroscopy of atomically thin two-dimensional magneticiron phosphorus trisulfide (FePS3) crystals. 2D Mater. 2016, 3, 031009.

    Article  CAS  Google Scholar 

  114. [114]

    Haines, C. R. S.; Coak, M. J.; Wildes, A. R.; Lampronti, G. I.; Liu, C.; Nahai-Williamson, P.; Hamidov, H.; Daisenberger, D.; Saxena, S. S. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3. Phys. Rev. Lett.2018, 121, 266801.

    CAS  Article  Google Scholar 

  115. [115]

    Lee, J.; Ko, T. Y.; Kim, J. H.; Bark, H.; Kang, B.; Jung, S. G.; Park, T.; Lee, Z.; Ryu, S.; Lee, C. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano2017, 11, 10935–10944.

    CAS  Article  Google Scholar 

  116. [116]

    Gu, P. F.; Tan, Q. H.; Wan, Y.; Li, Z. L.; Peng, Y. X.; Lai, J. W.; Ma, J. C.; Yao, X. H.; Yang, S. Q.; Yuan, K. et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano2020, 14, 1003–1010.

    CAS  Article  Google Scholar 

  117. [117]

    Lee, M. J.; Lee, S.; Lee, S.; Balamurugan, K.; Yoon, C.; Jang, J. T.; Kim, S. H.; Kwon, D. H.; Kim, M.; Ahn, J. P. et al. Synaptic devices based on two-dimensional layered single-crystal chromium thiophosphate (CrPS4). NPG Asia Mater.2018, 10, 23–30.

    CAS  Article  Google Scholar 

  118. [118]

    Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun.2017, 8, 14956.

    CAS  Article  Google Scholar 

  119. [119]

    Wan, S. Y.; Li, Y.; Li, W.; Mao, X. Y.; Zhu, W. G.; Zeng, H. L. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale2018, 10, 14885–14892.

    CAS  Article  Google Scholar 

  120. [120]

    Kim, H. J.; Kang, S. H.; Hamada, I.; Son, Y. W. Origins of the structural phase transitions in MoTe2 and WTe2. Phys. Rev. B2017, 95, 180101.

    Article  Google Scholar 

  121. [121]

    Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A. F. Tunneling spin valves based on Fe3GeTe2/hBN/ Fe3GeTe2 van der Waals heterostructures. Nano Lett.2018, 18, 4303–4308.

    CAS  Article  Google Scholar 

  122. [122]

    Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun.2018, 9, 2516.

    Article  CAS  Google Scholar 

  123. [123]

    Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron.2018, 1, 344–349.

    CAS  Article  Google Scholar 

  124. [124]

    Zhong, D.; Seyler, K. L.; Linpeng, X.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M. A. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv.2017, 3, 1603113.

    Article  Google Scholar 

  125. [125]

    Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett.1988, 61, 2472–2475.

    CAS  Article  Google Scholar 

  126. [126]

    Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromag-netic interlayer exchange. Phys. Rev. B1989, 39, 4828–4830.

    CAS  Article  Google Scholar 

  127. [127]

    Ko, C.; Lee, Y.; Chen, Y. B.; Suh, J.; Fu, D. Y.; Suslu, A.; Lee, S.; Clarkson, J. D.; Choe, H. S.; Tongay, S. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater.2016, 28, 2923–2930.

    CAS  Article  Google Scholar 

  128. [128]

    Ding, K. Y.; Wang, J. J.; Zhou, Y. X.; Tian, H.; Lu, L.; Mazzarello, R.; Jia, C. L.; Zhang, W.; Rao, F.; Ma, E. Phase-change hetero-structure enables ultralow noise and drift for memory operation. Science2019, 366, 210–215.

    CAS  Article  Google Scholar 

  129. [129]

    Huang, W. C.; Zhao, W. B.; Luo, Z.; Yin, Y. W.; Lin, Y.; Hou, C. M.; Tian, B. B.; Duan, C. G.; Li, X. G. A high-speed and low-power multistate memory based on multiferroic tunnel junctions. Adv. Electron. Mater.2018, 4, 1700560.

    Article  CAS  Google Scholar 

  130. [130]

    Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature2017, 546, 124–128.

    CAS  Article  Google Scholar 

  131. [131]

    Chen, X. Z.; Zhou, X. F.; Cheng, R.; Song, C.; Zhang, J.; Wu, Y. C.; Ba, Y.; Li, H. B.; Sun, Y. M.; You, Y. F. et al. Electric field control of Néel spin-orbit torque in an antiferromagnet. Nat. Mater.2019, 18, 931–935.

    CAS  Article  Google Scholar 

  132. [132]

    May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano2019, 13, 4436–4442.

    CAS  Article  Google Scholar 

  133. [133]

    Shcherbakov, D.; Stepanov, P.; Weber, D.; Wang, Y. X.; Hu, J.; Zhu, Y. L.; Watanabe, K.; Taniguchi, T.; Mao, Z. Q.; Windl, W. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett.2018, 18, 4214–4219.

    CAS  Article  Google Scholar 

  134. [134]

    Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol.2013, 8, 152–156.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 51602040 and 51872039), Science and Technology Program of Sichuan (No. M112018JY0025) and Scientific Research Foundation for New Teachers of UESTC (No. A03013023601007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Deng, L. & Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2860-3

Download citation

Keywords

  • two-dimensional (2D) materials
  • ferromagnetic
  • ferroelectric
  • heterostructure
  • nonvolatile memory