Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction

Abstract

Developing highly efficient non-Pt catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction (ORR). Herein, a facile and efficient strategy is demonstrated to prepare N-doped carbon encapsulated ordered Pd-Fe intermetallic (O-Pd-Fe@NC/C) nanoparticles via a one-step thermal annealing method. The obtained O-Pd-Fe@NC/C nanoparticles show enhanced ORR activity, durability and anti-poisoning capacity in both acid and alkaline medium. When O-Pd-Fe@NC/C serving as cathode catalyst for Zn-air battery, it exhibits higher voltage platform and superior cycling performance with respect to the Zn-air battery based on the mixture of Pt/C and Ir/C catalysts. The enhanced electrocatalytic performance can be ascribed to the formation of face-centered tetragonal (fct) Pd-Fe nanoparticles, the protective action of the N-doped carbon layer and the interface confinement effect between them. The in situ formed N-doped carbon shell not only restrains the Pd-Fe ordered intermetallics from aggregating effectively during the thermal annealing process, but also provides a strong anchoring effect to avoid the detachment of Pd-Fe nanoparticles from the carbon support during the potential cycling. This facile carbon encapsulation strategy may also be extended to the preparation of a wide variety of N-doped carbon encapsulated intermetallic compounds for fuel cell application.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater.2012, 12, 81–87.

    Article  Google Scholar 

  2. [2]

    Gu, Y.; Liu, Y. F.; Cao, X. T. Evolving strategies for tumor immunotherapy: Enhancing the enhancer and suppressing the suppressor. Nat. Sci. Rev.2017, 4, 161–163.

    CAS  Article  Google Scholar 

  3. [3]

    Zhu, C. Z.; Dong, S. J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale2013, 5, 1753–1767.

    CAS  Article  Google Scholar 

  4. [4]

    Wang, X.; Wang, J.; Wang, D. L.; Dou, S.; Ma, Z. L.; Wu, J. H.; Tao, L.; Shen, A. L.; Ouyang, C. B.; Liu, Q. H. et al. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun.2014, 50, 4839–4842.

    CAS  Article  Google Scholar 

  5. [5]

    Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale2016, 8, 14793–14802.

    CAS  Article  Google Scholar 

  6. [6]

    Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J. Mater. Chem.2012, 22, 9155–9160.

    CAS  Article  Google Scholar 

  7. [7]

    He, D. P.; Tang, H. L.; Kou, Z. K.; Pan, M.; Sun, X. L.; Zhang, J. J.; Mu, S. C. Engineered graphene materials: Synthesis and applications for polymer electrolyte membrane fuel cells. Adv. Mater.2017, 29, 1601741.

    Article  Google Scholar 

  8. [8]

    Yin, S B.; Cai, M.; Wang, C. X.; Shen, P. K. Tungsten carbide promoted Pd-Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions. Energy Environ. Sci.2011, 4, 558–563.

    CAS  Article  Google Scholar 

  9. [9]

    Wang, G. W.; Guan, J. X.; Xiao, L.; Huang, B.; Wu, N.; Lu, J. T.; Zhuang, L. Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy2016, 29, 268–274.

    CAS  Article  Google Scholar 

  10. [10]

    Zhang, L.; Lee, K.; Zhang, J. J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd–Co alloy electrocatalysts. Electrochim. Acta2007, 52, 3088–3094.

    CAS  Article  Google Scholar 

  11. [11]

    Luo, L. X.; Zhu, F. J.; Tian, R. X.; Li, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Composition-graded PdxNi1−x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal.2017, 7, 5420–5430.

    CAS  Article  Google Scholar 

  12. [12]

    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science2009, 324, 1302–1305.

    CAS  Article  Google Scholar 

  13. [13]

    Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties. ChemSusChem2013, 6, 1878–1882.

    CAS  Article  Google Scholar 

  14. [14]

    Zhang, L.; Hou, F.; Tan, Y. W. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chem. Commun.2012, 48, 7152–7154.

    CAS  Article  Google Scholar 

  15. [15]

    Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res.2018, 11, 4686–4696.

    CAS  Article  Google Scholar 

  16. [16]

    Zhang, B. T.; Fu, G. T.; Li, Y. T.; Liang, L. C.; Grundish, N. S.; Tang, Y. W.; Goodenough, J. B.; Cui, Z. M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew. Chem., Int. Ed.2020, 59, 7857–7863.

    CAS  Article  Google Scholar 

  17. [17]

    Xiao, W. P.; Cordeiro, M. A. L.; Gao, G. Y.; Zheng, A. M.; Wang, J.; Lei, W.; Gong, M. X.; Lin, R. Q.; Stavitski, E.; Xin, H. L. et al. Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy2018, 50, 70–78.

    CAS  Article  Google Scholar 

  18. [18]

    Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res.2015, 8, 2777–2788.

    CAS  Article  Google Scholar 

  19. [19]

    Maiti, K.; Balamurugan, J.; Peera, S. G.; Kim, N. H.; Lee, J. H. Highly active and durable core-shell fct-PdFe@Pd nanoparticles encapsulated NG as an efficient catalyst for oxygen reduction reaction. ACS Appl. Mater Interfaces2018, 10, 18734–18745.

    CAS  Article  Google Scholar 

  20. [20]

    Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A. H.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc.2012, 134, 20457–20465.

    CAS  Article  Google Scholar 

  21. [21]

    Chen, H.; Wang, D.; Yu, Y. C.; Newton, K. A.; Muller, D. A.; Abruña, H.; DiSalvo, F. J. A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J. Am. Chem. Soc.2012, 134, 18453–18459.

    CAS  Article  Google Scholar 

  22. [22]

    Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater.2015, 27, 277–281.

    CAS  Article  Google Scholar 

  23. [23]

    An, L.; Jiang, N.; Li, B.; Hua, S. X.; Fu, Y. T.; Liu, J. X.; Hao, W.; Xia, D. G.; Sun, Z. C. A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. J. Mater. Chem. A2018, 6, 5962–5970.

    CAS  Article  Google Scholar 

  24. [24]

    Choi, C. H.; Lee, S. Y.; Park, S. H.; Woo, S. I. Highly active N-doped-CNTs grafted on Fe/C prepared by pyrolysis of dicyandiamide on Fe2O3/C for electrochemical oxygen reduction reaction. Appl. Catal. B Environ.2011, 103, 362–368.

    CAS  Article  Google Scholar 

  25. [25]

    Li, Q.; Xu, D.; Guo, J. N.; Ou, X.; Yan, F. Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon2017, 124, 599–610.

    CAS  Article  Google Scholar 

  26. [26]

    Wang, Y.; Wang, L.; Tong, M. M.; Zhao, X. J.; Gao, Y. T.; Fu, H. G. Co-VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction. Nanoscale2018, 10, 4311–4319.

    CAS  Article  Google Scholar 

  27. [27]

    Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A2014, 2, 7281–7287.

    CAS  Article  Google Scholar 

  28. [28]

    Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal.2015, 5, 2903–2909.

    CAS  Article  Google Scholar 

  29. [29]

    Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y. M.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal.2015, 5, 2740–2753.

    CAS  Article  Google Scholar 

  30. [30]

    Perazzolo, V.; Gradzka, E.; Durante, C.; Pilot, R.; Vicentini, N.; Rizzi, G. A.; Granozzi, G.; Gennaro, A. Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons. Electrochim. Acta2016, 197, 251–262.

    CAS  Article  Google Scholar 

  31. [31]

    Hu, J.; Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Yang, T. H.; Park, G. G.; Zhang, C. X.; Chen, G. Y.; Adzic, R. Pt monolayer shell on nitrided alloy core—a path to highly stable oxygen reduction catalyst. Catalysts2015, 5, 1321–1332.

    CAS  Article  Google Scholar 

  32. [32]

    Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Pt-decorated composition-tunable Pd-Fe@Pd/C core-shell nanoparticles with enhanced electrocatalytic activity toward the oxygen reduction reaction. J. Am. Chem. Soc.2018, 140, 7248–7255.

    CAS  Article  Google Scholar 

  33. [33]

    Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed.2010, 49, 2565–2569.

    CAS  Article  Google Scholar 

  34. [34]

    He, C. Y.; Shen, P. K. Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. Nano Energy2014, 8, 52–61.

    CAS  Article  Google Scholar 

  35. [35]

    Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J. X.; Jia, L.; Yao, W.; Li, L.; Wei, Z. D. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media. Angew. Chem., Int. Ed.2018, 57, 15101–15106.

    CAS  Article  Google Scholar 

  36. [36]

    Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater.2008, 20, 743–747.

    CAS  Article  Google Scholar 

  37. [37]

    Choi, B.; Nam, W. H.; Chung, D. Y.; Park, I. S.; Yoo, S. J.; Song, J. C.; Sung, Y. E. Enhanced methanol tolerance of highly Pd rich Pd-Pt cathode electrocatalysts in direct methanol fuel cells. Electrochim. Acta2015, 164, 235–242.

    CAS  Article  Google Scholar 

  38. [38]

    Wang, J.; Wu, Z. X.; Han, L. L.; Liu, Y. Y.; Guo, J. P.; Xin, H. L.; Wang, D. L. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chin. Chem. Lett.2016, 27, 597–601.

    CAS  Article  Google Scholar 

  39. [39]

    Hu, L. B.; Yu, F.; Yuan, H. F.; Wang, G.; Liu, M. C.; Wang, L. N.; Xue, X. Y.; Peng, B. H.; Tian, Z. Q.; Dai, B. Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method. Chin. Chem. Lett.2019, 30, 624–629.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91963109) and the Fundamental Research Funds for the Central Universities (2172019kfyRCPY100). The authors thank the Analytical and Testing Center of HUST for allowing the use of its help and facilities for XRD and XPS. This research used resources of the UC IMRI facilities and the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deli Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Lu, Y., Zhao, X. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2856-z

Download citation

Keywords

  • palladium
  • carbon encapsulation strategy
  • ordered intermetallic nanoparticles
  • oxygen reduction reaction (ORR)
  • Zn-air battery