Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy

Abstract

Biomimetic nanozymes possessing natural enzyme-mimetic activities have been extensively applied in nanocatalytic tumor therapy. However, engineering hybrid biomimetic nanozymes to achieve superior nanozyme activity remained to be an intractable challenge in hypoxic tumors. Herein, a rod-like biomimetic hybrid inorganic MnO2-Au nanozymes are developed, where MnO2 and ultrasmall Au nanoparticles (NPs) are successively deposited on the mesoporous silica nanorod to cooperatively improve the O2 content and thermal sensitivity of hypoxic solid tumors guided by multi-modal imaging. Under the catalyzing of MnO2, the intratumoral H2O2 is decomposed to greatly accelerate O2 generation, which could boost the curative effect of radiation therapy (RT) and further enhance the Au-catalyzed glucose oxidation. Mutually, the Au NPs can steadily and efficiently catalyze the oxidation of glucose in harsh tumor microenvironment, thus sensitizing tumor cells to thermal ablation for mild photothermal therapy and further promoting the catalytic efficiency of MnO2 with the self-supplied H2O2/H+. As a result, this mutual-reinforcing cycle can endow the nanoplatform with accelerated O2 generation, thus alleviating hypoxic environment and further boosting RT effect. Furthermore, acute glucose consuming can induce downregulation expression of heat shock protein (HSP), achieving starvation-promoted mild photothermal therapy. This synthesized hybrid nanozymes proves to be a versatile theranostic agent for nanocatalytic cancer therapy.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Zhang, C. Y.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem. Sci.2019, 10, 6932–6943.

    CAS  Article  Google Scholar 

  2. [2]

    Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small2017, 13, 1701621.

    Article  CAS  Google Scholar 

  3. [3]

    Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater.2017, 29, 1701429.

    Article  CAS  Google Scholar 

  4. [4]

    Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater.2019, 31, 1904914.

    CAS  Article  Google Scholar 

  5. [5]

    Chen, C.; Ou, H. L.; Liu, R. H.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater.2020, 32, 1806331.

    CAS  Article  Google Scholar 

  6. [6]

    Wang, H.; Mu, X. Y.; He, H.; Zhang, X. D. Cancer radiosensitizers. Trends Pharmacol. Sci.2018, 39, 24–48.

    CAS  Article  Google Scholar 

  7. [7]

    Jiang, W.; Li, Q.; Xiao, L.; Dou, J. X.; Liu, Y.; Yu, W. H.; Ma, Y. C.; Li, X. Q.; You, Y. Z.; Tong, Z. T. et al. Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano2018, 12, 5684–5698.

    CAS  Article  Google Scholar 

  8. [8]

    Jiang, W.; Li, Q.; Zhu, Z. C.; Wang, Q.; Dou, J. X.; Zhao, Y. M.; Lv, W. F.; Zhong, F.; Yao, Y. D.; Zhang, G. Q. et al. Cancer chemoradiotherapy duo: Nano-enabled targeting of DNA lesion formation and DNA damage response. ACS Appl. Mater. Interfaces2018, 10, 35734–35744.

    CAS  Article  Google Scholar 

  9. [9]

    Dang, J. J.; He, H.; Chen, D. L.; Yin, L. C. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci.2017, 5, 1500–1511.

    CAS  Article  Google Scholar 

  10. [10]

    Askoxylakis, V.; Millonig, G.; Wirkner, U.; Schwager, C.; Rana, S.; Altmann, A.; Haberkorn, U.; Debus, J.; Mueller, S.; Huber, P. E. Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency. Radiat. Oncol.2011, 6, 35.

    CAS  Article  Google Scholar 

  11. [11]

    Zhao, C. Y.; Tong, Y. J.; Li, X. L.; Shao, L. H.; Chen, L.; Lu, J. Q.; Deng, X. W.; Wang, X.; Wu, Y. Photosensitive nanoparticles combining vascular-independent intratumor distribution and on-demand oxygen-depot delivery for enhanced cancer photodynamic therapy. Small2018, 14, 1703045.

    Article  CAS  Google Scholar 

  12. [12]

    Zhou, Z. G.; Zhang, B. L.; Wang, S. S.; Zai, W. J.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Perfluorocarbon nanoparticles mediated platelet blocking disrupt vascular barriers to improve the efficacy of oxygen-sensitive antitumor drugs. Small2018, 14, 1801694.

    Article  CAS  Google Scholar 

  13. [13]

    Jansman, M. M. T.; Hosta-Rigau, L. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv. Colloid Interface Sci.2018, 260, 65–84.

    CAS  Article  Google Scholar 

  14. [14]

    Zhang, W. T.; Li, S. H.; Liu, X. N.; Yang, C. Y.; Hu, N.; Dou, L. N.; Zhao, B. X.; Zhang, Q. Y.; Suo, Y. R.; Wang, J. L. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Fund. Mater.2018, 28, 1706375.

    Article  CAS  Google Scholar 

  15. [15]

    Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano2018, 12, 3780–3795.

    CAS  Article  Google Scholar 

  16. [16]

    Cheng, X. W.; Huang, L.; Yang, X. Y.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/zeolite Y nanocomposite. J. Colloid Interface Sci.2019, 535, 425–435.

    CAS  Article  Google Scholar 

  17. [17]

    Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater.2017, 29, 1701683.

    Article  CAS  Google Scholar 

  18. [18]

    Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozymecatalyzed cascade reaction. Adv. Sci.2019, 6, 1801733.

    Article  CAS  Google Scholar 

  19. [19]

    Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett.2018, 18, 7609–7618.

    CAS  Article  Google Scholar 

  20. [20]

    Zhang, R.; Feng, L. Z.; Dong, Z. L.; Wang, L.; Liang, C.; Chen, J. W.; Ma, Q. X.; Zhang, R.; Chen, Q.; Wang, Y. C. et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials2018, 162, 123–131.

    CAS  Article  Google Scholar 

  21. [21]

    Chen, W. H.; Luo, G. F.; Vázquez-González, M.; Cazelles, R.; Sohn, Y. S.; Nechushtai, R.; Mandel, Y.; Willner, I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano2018, 12, 7538–7545.

    CAS  Article  Google Scholar 

  22. [22]

    Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed.2018, 57, 9224–9237.

    CAS  Article  Google Scholar 

  23. [23]

    Kotov, N. A. Inorganic nanoparticles as protein mimics. Science2010, 330, 188–189.

    CAS  Article  Google Scholar 

  24. [24]

    Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem.2019, 131, 12754–12761.

    Article  Google Scholar 

  25. [25]

    Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res.2014, 47, 1097–1105.

    CAS  Article  Google Scholar 

  26. [26]

    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev.2013, 42, 6060–6093.

    CAS  Article  Google Scholar 

  27. [27]

    Qiana, X. Q.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials2019, 211, 1–13.

    Article  CAS  Google Scholar 

  28. [28]

    Garg, B.; Bisht, T.; Ling, Y. C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules2015, 20, 14155–14190.

    CAS  Article  Google Scholar 

  29. [29]

    da Silva, A. G. M.; Rodrigues, T. S.; Candido, E. G.; de Freitas, I. C.; da Silva, A. H. M.; Fajardo, H. V.; Balzer, R.; Gomes, J. F.; Assaf, J. M.; de Oliveira, D. C. et al. Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. J. Colloid Interface Sci.2018, 530, 282–291.

    CAS  Article  Google Scholar 

  30. [30]

    Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano2010, 12, 7451–7458.

    Article  CAS  Google Scholar 

  31. [31]

    Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials2010, 31, 438–448.

    CAS  Article  Google Scholar 

  32. [32]

    Yang, H. R.; Chen, Z.; Zhang, L.; Yung, W. Y.; Leung, K. C. F.; Chan, H. Y. E.; Choi, C. H. J. Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small2016, 12, 5178–5189.

    CAS  Article  Google Scholar 

  33. [33]

    Tsai, C.; Hung, Y.; Chou, Y. H.; Huang, D. M.; Hsiao, J. K.; Chang, C.; Chen, Y. C.; Mou, C. Y. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small2008, 4, 186–191.

    CAS  Article  Google Scholar 

  34. [34]

    Du, C.; He, S. J.; Gao, X. H.; Chen, W. Hierarchical Cu@MnO2 core-shell Nanowires: A nonprecious-metal catalyst with an excellent catalytic activity toward the reduction of 4-nitrophenol. Chem. Cat. Chem.2016, 8, 2885–2889.

    CAS  Google Scholar 

  35. [35]

    Sun, D.; Wageh, S.; Al-Ghamdi, A. A.; Le, Y.; Yu, J. G.; Jiang, C. J. Pt/C@MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature. Appl. Surf. Sci.2019, 466, 301–308.

    CAS  Article  Google Scholar 

  36. [36]

    da Silva, A. G. M.; Kisukuri, C. M.; Rodrigues, T. S.; Candido, E. G.; de Freitas, I. C.; da Silva, A. H. M.; Assaf, J. M.; Oliveira, D. C.; Andrade, L. H.; Camargo, R H. C. MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Appl. Catal. B: Environ.2016, 184, 35–43.

    CAS  Article  Google Scholar 

  37. [37]

    Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano2018, 12, 2858–2872.

    CAS  Article  Google Scholar 

  38. [38]

    Chen, W. H.; Luo, G F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano2017, 11, 1419–1431.

    CAS  Article  Google Scholar 

  39. [39]

    Ni, C.; Zhang, X. Y.; Duan, X. C.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett.2019, 19, 318–330.

    CAS  Article  Google Scholar 

  40. [40]

    Zhao, R. F.; Han, X. X.; Li, Y. Y.; Wang, H.; Ji, T. J.; Zhao, Y. L.; Nie, G. J. Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod. ACS Nano2017, 11, 8103–8113.

    CAS  Article  Google Scholar 

  41. [41]

    Huang, Z. M.; Cai, Q. Y.; Ding, D. C.; Ge, J.; Hu, Y. L.; Yang, J.; Zhang, L.; Li, Z. H. A facile label-free colorimetric method for highly sensitive glutathione detection by using manganese dioxide nanosheets. Sens. Actuators B Chem.2017, 242, 355–361.

    CAS  Article  Google Scholar 

  42. [42]

    Huang, M.; Zhang, Y. X.; Li, F.; Wang, Z. C.; Alamusi; Hu, N.; Wen, Z. Y.; Liu, Q. Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep.2015, 4, 4518.

    Article  CAS  Google Scholar 

  43. [43]

    Chen, Q.; Li, K. G.; Wen, S. H.; Liu, H.; Peng, C.; Cai, H. D.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials2013, 34, 5200–5209.

    CAS  Article  Google Scholar 

  44. [44]

    Yamaoka, K.; Nakagawa, T.; Uno, T. Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm.1978, 6, 547–558.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Young Elite Scientists Sponsorship Program by Tianjin (No. 0701320001). And this work was partially supported by the grants of the National Natural Science Foundation of China (Nos. 31971106 and 81372124).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinxing Wang or Nan Li.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ren, C., Xu, M. et al. Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2844-3

Download citation

Keywords

  • nanozyme
  • self-supplied
  • mutual-reinforcing
  • hypoxia
  • catalysis-enhanced therapy