Investigating molecular orbitals with submolecular precision on pristine sites and single atomic vacancies of monolayer h-BN

Abstract

Understanding the influence of adsorption sites to the electronic properties of adsorbed molecules on two-dimensional (2D) ultrathin insulator is of essential importance for future organic-inorganic hybrid nanodevices. Here, the adsorption and electronic states of manganese phthalocyanine (MnPc) on a single layer of hexagonal boron nitride (h-BN) have been comprehensively studied by low-temperature scanning tunneling microscopy/spectroscopy and tight binding calculations. The frontier orbitals of the MnPc can change drastically by reversible manipulation of individual MnPc molecules onto and away from the single atomic vacancies at the h-BN surface. Particularly, the change of the molecular electronic configuration can be controlled depending on whether the atomic vacancy is below the metal center or the ligand of the MnPc. These findings give new insight into defect-engineering of the organic-inorganic hybrid nanodevices down to submolecular level.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Gao, L.; Ji, W.; Hu, Y. B.; Cheng, Z. H.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; Guo, W.; Du, S. X. et al. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett.2007, 99, 106402.

    CAS  Article  Google Scholar 

  2. [2]

    Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J. M.; Giovanelli, L.; Lay, G. L. Physics of ultra-thin phthalocyanine films on semiconductors. Prog. Surf. Sci.2004, 77, 139–170.

    CAS  Article  Google Scholar 

  3. [3]

    O’Regan, B. C.; López-Duarte, I.; Martínez-Díaz, M. V.; Forneli, A.; Albero, J.; Morandeira, A.; Palomares, E.; Torres, T.; Durrant, J. R. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J. Am. Chem. Soc.2008, 130, 2906–2907.

    Article  Google Scholar 

  4. [4]

    Zhou, H. T.; Zhang, L. Z.; Mao, J. H.; Li, G.; Zhang, Y.; Wang, Y. L.; Du, S. X.; Hofer, W. A.; Gao, H. J. Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001). Nano Res.2013, 6, 131–137.

    CAS  Article  Google Scholar 

  5. [5]

    Wang, Q. H.; Hersam, M. C. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem.2009, 1, 206–211.

    CAS  Google Scholar 

  6. [6]

    Liu, L. W.; Dienel, T.; Widmer, R.; Gröning, O. Interplay between energy-level position and charging effect of manganese phthalocyanines on an atomically thin insulator. ACS Nano2015, 9, 10125–10132.

    CAS  Article  Google Scholar 

  7. [7]

    Dil, H.; Lobo-Checa, J.; Laskowski, R.; Blaha, P.; Berner, S.; Osterwalder, J.; Greber, T. Surface trapping of atoms and molecules with dipole rings. Science2008, 319, 1824–1826.

    CAS  Article  Google Scholar 

  8. [8]

    Schulz, F.; Ijäs, M.; Drost, R.; Hämäläinen, S. K.; Harju, A.; Seitsonen, A. P.; Liljeroth, P. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys.2015, 11, 229–234.

    CAS  Article  Google Scholar 

  9. [9]

    Greber, T.; Auwärter, W.; Hoesch, M.; Grad, G.; Blaha, P.; Osterwalder, J. The Fermi surface in a magnetic metal-insulator interface. Surf. Rev. Lett.2002, 9, 1243–1250.

    CAS  Article  Google Scholar 

  10. [10]

    Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Ng, M. L.; Preobrajenski, A. B.; Zakharov, A. A.; Mårtensson, N. A single h-BN layer on Pt(111). Surf. Sci.2008, 602, 1722–1726.

    Article  Google Scholar 

  11. [11]

    Gao, C.; Tao, L.; Zhang, Y. Y.; Du, S. X.; Pantelides, S. T.; Idrobo, J. C.; Zhou, W.; Gao, H. J. Spectroscopic signatures of edge states in hexagonal boron nitride. Nano Res.2019, 12, 1663–1667.

    CAS  Article  Google Scholar 

  12. [12]

    Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol.2016, 11, 37–41.

    CAS  Article  Google Scholar 

  13. [13]

    Kim, D. H.; Kim, H. S.; Song, M. W.; Lee, S.; Lee, S. Y. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy. Nano Converg.2017, 4, 13.

    Article  Google Scholar 

  14. [14]

    Gao, L.; Liu, Q.; Zhang, Y. Y.; Jiang, N.; Zhang, H. G.; Cheng, Z. H.; Qiu, W. F.; Du, S. X.; Liu, Y. Q.; Hofer, W. A. et al. Constructing an array of anchored single-molecule rotors on gold surfaces. Phys. Rev. Lett.2008, 101, 197209.

    CAS  Article  Google Scholar 

  15. [15]

    Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev.2007, 107, 1233–1271.

    CAS  Article  Google Scholar 

  16. [16]

    Craciun, M. F.; Rogge, S.; Morpurgo, A. F. Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped metal-phthalocyanine compounds. J. Am. Chem. Soc.2005, 127, 12210–12211.

    CAS  Article  Google Scholar 

  17. [17]

    Ince, M.; Yum, J. H.; Kim, Y.; Mathew, S.; Grätzel, M.; Torres, T.; Nazeeruddin, M. K. Molecular engineering of phthalocyanine sensitizers for dye-sensitized solar cells. J. Phys. Chem. C2014, 118, 17166–17170.

    CAS  Article  Google Scholar 

  18. [18]

    Guillaud, G.; Simon, J.; Germain, J. P. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coord. Chem. Rev.1998, 178–180, 1433–1484.

    Article  Google Scholar 

  19. [19]

    Sessi, P.; Bathon, T.; Kokh, K. A.; Tereshchenko, O. E.; Bode, M. Probing the electronic properties of individual MnPc molecules coupled to topological states. Nano Lett.2014, 14, 5092–5096.

    CAS  Article  Google Scholar 

  20. [20]

    Yang, K.; Xiao, W. D.; Jiang, Y. H.; Zhang, H. G.; Liu, L. W.; Mao, J. H.; Zhou, H. T.; Du, S. X.; Gao, H. J. Molecule-substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111). J. Phys. Chem. C2012, 116, 14052–14056.

    CAS  Article  Google Scholar 

  21. [21]

    Yang, K.; Xiao, W. D.; Liu, L. W.; Fei, X. M.; Chen, H.; Du, S. X.; Gao, H. J. Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules. Nano Res.2014, 7, 79–84.

    CAS  Article  Google Scholar 

  22. [22]

    Franke, K. J.; Schulze, G.; Pascual, J. I. Competition of superconducting phenomena and kondo screening at the nanoscale. Science2011, 332, 940–944.

    CAS  Article  Google Scholar 

  23. [23]

    Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C2011, 115, 21750–21754.

    CAS  Article  Google Scholar 

  24. [24]

    Ouyang, B.; Song, J. Strain engineering of magnetic states of vacancy-decorated hexagonal boron nitride. Appl. Phys. Lett.2013, 103, 102401.

    Article  Google Scholar 

  25. [25]

    Uhlmann, C.; Swart, I.; Repp, J. Controlling the orbital sequence in individual Cu-phthalocyanine molecules. Nano Lett.2013, 13, 777–780.

    CAS  Article  Google Scholar 

  26. [26]

    Iannuzzi, M.; Tran, F.; Widmer, R.; Dienel, T.; Radican, K.; Ding, Y.; Hutter, J.; Groning, O. Site-selective adsorption of phthalocyanine on h-BN/Rh(111) nanomesh. Phys. Chem. Chem. Phys.2014, 16, 12374–12384.

    CAS  Article  Google Scholar 

  27. [27]

    Grobosch, M.; Mahns, B.; Loose, C.; Friedrich, R.; Schmidt, C.; Kortus, J.; Knupfer, M. Identification of the electronic states of manganese phthalocyanine close to the Fermi level. Chem. Phys. Lett.2011, 505, 122–125.

    CAS  Article  Google Scholar 

  28. [28]

    Shen, X.; Sun, L. L.; Benassi, E.; Shen, Z. Y.; Zhao, X. Y.; Sanvito, S.; Hou, S. M. Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J. Chem. Phys.2010, 132, 054703.

    Article  Google Scholar 

  29. [29]

    Yuan, B. K.; Chen, P. C.; Zhang, J.; Deng, K.; Cheng, Z. H.; Wang, C. Topography multiplicity of titanyl phthalocyanine on ultrathin insulating films observed by STM. Chin. Phys. Lett.2013, 30, 106802.

    Article  Google Scholar 

  30. [30]

    Borghetti, P.; El-Sayed, A.; Goiri, E.; Rogero, C.; Lobo-Checa, J.; Floreano, L.; Ortega, J. E.; de Oteyza, D. G. Spectroscopic fingerprints of work-function-controlled phthalocyanine charging on metal surfaces. ACS Nano2014, 8, 12786–12795.

    CAS  Article  Google Scholar 

  31. [31]

    Patera, L. L.; Queck, F.; Scheuerer, P.; Moll, N.; Repp, J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett.2019, 123, 016001.

    CAS  Article  Google Scholar 

  32. [32]

    Yu, A.; Li, S. W.; Dhital, B.; Lu, H. P.; Ho, W. Tunneling electron induced charging and light emission of single panhematin molecules. J. Phys. Chem. C2016, 120, 21099–21103.

    CAS  Article  Google Scholar 

  33. [33]

    Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science2006, 312, 1196–1199.

    CAS  Article  Google Scholar 

  34. [34]

    Mielke, J.; Hanke, F.; Peters, M. V.; Hecht, S.; Persson, M.; Grill, L. Adatoms underneath Single Porphyrin Molecules on Au(111). J. Am. Chem. Soc.2015, 11, 1844–1849.

    Article  Google Scholar 

  35. [35]

    Kügel, J.; Karolak, M.; Krönlein, A.; Serrate, D.; Bode, M.; Sangiovanni, G. Reversible magnetic switching of high-spin molecules on a giant Rashba surface. npj Quant. Mater.2018, 3, 53.

    Article  Google Scholar 

  36. [36]

    Zhang, Y. Y.; Du, S. X.; Gao, H. J. Binding configuration, electronic structure, and magnetic properties of metal phthalocyanines on a Au(111) surface studied with ab initio calculations. Phys. Rev. B2011, 84, 125446.

    Article  Google Scholar 

  37. [37]

    Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; Cawkwell, M. J. Numerical optimization of density functional tight binding models: Application to molecules containing carbon, hydrogen, nitrogen, and oxygen. J. Chem. Theory Comput.2017, 13, 6191–6200.

    CAS  Article  Google Scholar 

  38. [38]

    Dienel, T.; Kawai, S.; Sode, H.; Feng, X. L.; Müllen, K.; Ruffieux, P.; Fasel, R.; Gröning, O. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett.2015, 12, 5185–5190.

    Article  Google Scholar 

Download references

Acknowledgements

L. W. L., Y. L. W. and T. Z. thank the Beijing Natural Science Foundation (Nos. 4192054 and Z190006), the National Natural Science Foundation of China (Nos. 61971035, 61901038, and 61725107), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), and the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3050011181814). L. W. L. and O. G. would like to thank the EU-EMPA COFUND Project BONMAT and the Swiss National Science Foundation (Nos. CRSI20-122 703 and 200021_149627).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liwei Liu or Oliver Gröning.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Dienel, T., Günzburger, G. et al. Investigating molecular orbitals with submolecular precision on pristine sites and single atomic vacancies of monolayer h-BN. Nano Res. 13, 2233–2238 (2020). https://doi.org/10.1007/s12274-020-2842-5

Download citation

KeyWords

  • hexagonal boron nitride
  • phthalocyanine
  • single atomic vacancy
  • molecular orbital
  • scanning tunneling microscopy