High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8

An Erratum to this article was published on 02 July 2020

This article has been updated

Abstract

Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.

This is a preview of subscription content, access via your institution.

Change history

  • 02 July 2020

    The author information and the Acknowledgement were unfortunately incorrect,

References

  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science, 2004, 306, 666–669.

    CAS  Google Scholar 

  2. [2]

    Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K., Room-temperature quantum hall effect in graphene. Science, 2007, 315, 1379–1379.

    CAS  Google Scholar 

  3. [3]

    Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater., 2007, 6, 183–191.

    CAS  Google Scholar 

  4. [4]

    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5, 722–726.

    CAS  Google Scholar 

  5. [5]

    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102, 10451–10453.

    CAS  Google Scholar 

  6. [6]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6, 147–150.

    CAS  Google Scholar 

  7. [7]

    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J., High performance multilayer MoS2 transistors with scandium contacts. Nano Lett., 2013, 13, 100–105.

    CAS  Google Scholar 

  8. [8]

    Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A., Electrical transport properties of single-layer WS2. ACS Nano, 2014, 8, 8174–8181.

    CAS  Google Scholar 

  9. [9]

    Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J., High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano, 2014, 8, 10396–10402.

    CAS  Google Scholar 

  10. [10]

    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B., Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9, 372–377.

    CAS  Google Scholar 

  11. [11]

    Liu, X.; Liu, J. Y.; Antipina, L. Y.; Hu, J.; Yue, C. L.; Sanchez, A. M.; Sorokin, P. B.; Mao, Z. Q.; Wei, J., Direct fabrication of functional ultrathin single-crystal nanowires from quasi-one-dimensional van der waals crystals. Nano Lett., 2016, 16, 6188–6195.

    CAS  Google Scholar 

  12. [12]

    Stolyarov, M. A.; Liu, G. X.; Bloodgood, M. A.; Aytan, E.; Jiang, C. L.; Samnakay, R.; Salguero, T. T.; Nika, D. L.; Rumyantsev, S. L.; Shur, M. S. et al., Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: Prospects of interconnect applications. Nanoscale, 2016, 8, 15774–15782.

    CAS  Google Scholar 

  13. [13]

    Liu, G. X.; Rumyantsev, S.; Bloodgood, M. A.; Salguero, T. T.; Shur, M.; Balandin, A. A., Low-frequency electronic noise in quasi-1D TaSe3 van der Waals nanowires. Nano Lett., 2017, 17, 377–383.

    CAS  Google Scholar 

  14. [14]

    Peng, B.; Xu, K.; Zhang, H.; Ning, Z. Y.; Shao, H. Z.; Ni, G.; Li, J.; Zhu, Y. Y.; Zhu, H. Y.; Soukoulis, C. M., 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul., 2018, 1, 1700005.

    Google Scholar 

  15. [15]

    Geremew, A.; Bloodgood, M. A.; Aytan, E.; Woo, B. W. K.; Corber, S. R.; Liu, G.; Bozhilov, K. N.; Salguero, T. T.; Rumyantsev, S.; Rao, M. P. et al., Current carrying capacity of quasi-1D ZrTe3 van der Waals nanoribbons. IEEE Electr. Device Lett., 2018, 39, 735–738.

    CAS  Google Scholar 

  16. [16]

    Bloodgood, M. A.; Wei, P. R.; Aytan, E.; Bozhilov, K. N.; Balandin, A. A.; Salguero, T. T., Monoclinic structures of niobium trisulfide. APL Mater., 2018, 6, 026602.

    Google Scholar 

  17. [17]

    Geremew, A. K.; Kargar, F.; Zhang, E. X.; Zhao, S. E.; Aytan, E.; Bloodgood, M. A.; Salguero, T. T.; Rumyantsev, S.; Fedoseyev, A.; Fleetwood, D. M. et al., Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. Nanoscale, 2019, 11, 8380–8386.

    CAS  Google Scholar 

  18. [18]

    Fox, D.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileáin, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V. et al., Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett., 2015, 15, 5307–5313.

    CAS  Google Scholar 

  19. [19]

    Stanford, M. G.; Pudasaini, P. R.; Cross, N.; Mahady, K.; Hoffman, A. N.; Mandrus, D. G.; Duscher, G.; Chisholm, M. F.; Rack, P. D. Tungsten diselenide patterning and nanoribbon formation by gas-assisted focused-helium-ion-beam-induced etching. Small Methods, 2017, 7, 1600060.

    Google Scholar 

  20. [20]

    Nethravathi, C.; Jeffery, A. A.; Rajamathi, M.; Kawamoto, N.; Tenne, R.; Golberg, D.; Bando, Y., Chemical unzipping of WS2 nanotubes. ACS Nano, 2013, 7, 7311–7317.

    CAS  Google Scholar 

  21. [21]

    Lin, J.; Peng, Z. W.; Wang, G.; Zakhidov, D.; Rodriguez, E.; Yacaman, M. J.; Tour, J. M., Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Adv. Energy Mater., 2014, 4, 1301875.

    Google Scholar 

  22. [22]

    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3, 563–568.

    CAS  Google Scholar 

  23. [23]

    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331, 568–571.

    CAS  Google Scholar 

  24. [24]

    Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al., Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011, 23, 3944–3948.

    CAS  Google Scholar 

  25. [25]

    Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P., Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun., 2014, 50, 13338–13341.

    CAS  Google Scholar 

  26. [26]

    Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv Mater., 2015, 27, 1887–1892.

    CAS  Google Scholar 

  27. [27]

    Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D., Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater., 2009, 21, 2889–2893.

    CAS  Google Scholar 

  28. [28]

    Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B., Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano, 2010, 4, 1299–1304.

    CAS  Google Scholar 

  29. [29]

    Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356, 69–73.

    CAS  Google Scholar 

  30. [30]

    Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T.; Smalley, R. E., Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett., 1999, 303, 125–129.

    CAS  Google Scholar 

  31. [31]

    Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z. Y.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z. T. T.; Carpenter, L. et al., Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater., 2008, 20, 1876–1881.

    CAS  Google Scholar 

  32. [32]

    Coleman, J. N., Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater., 2009, 19, 3680–3695.

    CAS  Google Scholar 

  33. [33]

    Cao, Q.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Haensch, W., Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. ACS Nano, 2012, 6, 6471–6477.

    CAS  Google Scholar 

  34. [34]

    Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T., High-mobility nanotube transistor memory. Nano Lett., 2002, 2, 755–759.

    CAS  Google Scholar 

  35. [35]

    Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S., Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett., 2004, 4, 35–39.

    Google Scholar 

  36. [36]

    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol., 2007, 2, 230–236.

    CAS  Google Scholar 

  37. [37]

    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A., Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454, 495–500.

    CAS  Google Scholar 

  38. [38]

    Cui, Y.; Zhang, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M., High performance silicon nanowire field effect transistors. Nano Lett., 2003, 3, 149–152.

    CAS  Google Scholar 

  39. [39]

    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003, 425, 274–278.

    CAS  Google Scholar 

  40. [40]

    Tang, M. S. Y.; Ng, E. P.; Juan, J. C.; Ooi, C. W.; Ling, T. C.; Woon, K. L.; Show, P. L., Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: A review. Nanotechnology, 2016, 27, 332002.

    Google Scholar 

  41. [41]

    Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J. et al., Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett., 2015, 15, 5449–5454.

    CAS  Google Scholar 

  42. [42]

    Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al., Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett., 2013, 13, 1007–1015.

    CAS  Google Scholar 

  43. [43]

    Claus, R.; Hacker, H. H.; Schrötter, H. W.; Brandmüller, J.; Haussühl, S., Low-frequency optical-phonon spectrum of benzil. Phys. Rev., 1969, 187, 1128.

    CAS  Google Scholar 

  44. [44]

    Ren, Z. Q.; McNeil, L. E.; Liu, S. B.; Kloc, C., Molecular motion and mobility in an organic single crystal: Raman study and model. Phys. Rev. B, 2009, 80, 245211.

    Google Scholar 

  45. [45]

    Ye, H. Q.; Liu, G. F.; Liu, S.; Casanova, D.; Ye, X.; Tao, X. T.; Zhang, Q. C.; Xiong, Q. H., Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew. Chem., Int. Ed., 2018, 57, 1928–1932.

    CAS  Google Scholar 

  46. [46]

    Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H., Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale, 2015, 7, 18708–18715.

    CAS  Google Scholar 

  47. [47]

    Braga, D.; Lezama, I. G.; Berger, H.; Morpurgo, A. F., Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett., 2012, 12, 5218–5223.

    CAS  Google Scholar 

  48. [48]

    Lee, K.; Kim, H. Y.; Lotya, M.; Coleman, J. N.; Kim, G. T.; Duesberg, G. S. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater.2011, 23, 4178–4182.

    CAS  Google Scholar 

  49. [49]

    Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C., Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9, 3596–3604.

    CAS  Google Scholar 

  50. [50]

    Kim, W. J.; Lee, C. Y.; O’Brien, K. P.; Plombon, J. J.; Blackwell, J. M.; Strano, M. S. Connecting single molecule electrical measurements to ensemble spectroscopic properties for quantification of singlewalled carbon nanotube separation. J. Am. Chem. Soc.2009, 131, 3128–3129.

    CAS  Google Scholar 

  51. [51]

    Wang, W. M.; LeMieux, M. C.; Selvarasah, S.; Dokmeci, M. R.; Bao, Z. N., Dip-pen nanolithography of electrical contacts to singlewalled carbon nanotubes. ACS Nano, 2009, 3, 3543–3551.

    CAS  Google Scholar 

  52. [52]

    Ahn, Y.; Dunning, J.; Park, J., Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett., 2005, 5, 1367–1370.

    CAS  Google Scholar 

  53. [53]

    Freitag, M.; Tsang, J. C.; Bol, A.; Avouris, P.; Yuan, D. N.; Liu, J., Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett., 2007, 91, 031101.

    Google Scholar 

  54. [54]

    Avouris, P.; Freitag, M.; Perebeinos, V., Carbon-nanotube photonics and optoelectronics. Nat. Photonics, 2008, 2, 341–350.

    CAS  Google Scholar 

  55. [55]

    Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D., Nanowire ultraviolet photodetectors and optical switches. Adv. Mater., 2002, 14, 158–160.

    CAS  Google Scholar 

  56. [56]

    Li, Z. J.; Hu, Z. P.; Peng, J.; Wu, C. Z.; Yang, Y. C.; Feng, F.; Gao, P.; Yang, J. L.; Xie, Y., Ultrahigh infrared photoresponse from core-shell single-domain-VO2/V2O5 heterostructure in nanobeam. Adv. Funct. Mater., 2014, 24, 1821–1830.

    CAS  Google Scholar 

  57. [57]

    Wu, J. M.; Chang, W. E., Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces, 2014, 6, 14286–14292.

    CAS  Google Scholar 

  58. [58]

    Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. D., Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol., 2012, 7, 114–118.

    CAS  Google Scholar 

  59. [59]

    Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14, 3347–3352.

    CAS  Google Scholar 

  60. [60]

    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H., Single-layer MoS2 phototransistors. ACS Nano, 2012, 6, 74–80.

    CAS  Google Scholar 

  61. [61]

    Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater., 2012, 24, 5832–5836.

    CAS  Google Scholar 

  62. [62]

    Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al., Photosensor device based on few-layered WS2 films. Adv. Funct. Mater., 2013, 23, 5511–5517.

    Google Scholar 

  63. [63]

    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8, 497–501.

    CAS  Google Scholar 

  64. [64]

    Groenendijk, D. J.; Buscema, M.; Steele, G. A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A., Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett., 2014, 14, 5846–5852.

    CAS  Google Scholar 

  65. [65]

    Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D., A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors, 2009, 9, 6504–6529.

    CAS  Google Scholar 

  66. [66]

    Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H., Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology, 2011, 22, 115202.

    Google Scholar 

  67. [67]

    Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T., Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett., 2014, 14, 4785–4791.

    CAS  Google Scholar 

  68. [68]

    Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al., Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9, 676–681.

    CAS  Google Scholar 

  69. [69]

    Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A., Large and tunable photother-moelectric effect in single-layer MoS2. Nano Lett., 2013, 13, 358–363.

    CAS  Google Scholar 

  70. [70]

    Balasubramanian, K.; Fan, Y. W.; Burghard, M.; Kern, K.; Friedrich, M.; Wannek, U.; Mews, A., Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett., 2004, 84, 2400–2402.

    CAS  Google Scholar 

  71. [71]

    Tsen, A. W.; Donev, L. A. K.; Kurt, H.; Herman, L. H.; Park, J., Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nat. Nanotechnol., 2009, 4, 108–113.

    CAS  Google Scholar 

  72. [72]

    Buchs, G.; Bagiante, S.; Steele, G. A., Corrigendum: Identifying signatures of photothermal current in a double-gated semiconducting nanotube. Nat. Commun., 2015, 6, 5463.

    CAS  Google Scholar 

  73. [73]

    Ahn, Y. H.; Tsen, A. W.; Kim, B.; Park, Y. W.; Park, J., Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors. Nano Lett., 2007, 7, 3320–3323.

    CAS  Google Scholar 

  74. [74]

    Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Phys. Rev., 1964, 136, 864–871.

    Google Scholar 

  75. [75]

    Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140, A1133–A1138.

    Google Scholar 

  76. [76]

    Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865–3868.

    CAS  Google Scholar 

  77. [77]

    Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47, 558–561.

    CAS  Google Scholar 

  78. [78]

    Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49, 14251–14269.

    CAS  Google Scholar 

  79. [79]

    Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54, 11169–11186.

    CAS  Google Scholar 

  80. [80]

    Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13, 5188–5192.

    Google Scholar 

  81. [81]

    Fonari, A.; Stauffer, S. vasp_raman.py. https://github.com/raman-sc/VASP/[online] (accessed Dec 10, 2019).

  82. [82]

    Porezag, D.; Pederson, M. R., Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B, 1996, 54, 7830–7836.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the United States Department of Energy under Grant DE-SC0014208 and by The National Science Foundation under Grant 1752997. We acknowledge the Coordinated Instrument Facility (CIF) of Tulane University for the support of various instruments. P. B. S. and L.Y. A. (theoretical calculations) were supported by the Russian Science Foundation (No. 17-72-20223). We are grateful to the supercomputer cluster provided by the Materials Modelling and Development Laboratory at NUST “MISIS” (supported via the Grant from the Ministry of Education and Science of the Russian Federation No. 14.Y26.31.0005) and to the Joint Supercomputer Center of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiang Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, S., Antipina, L.Y. et al. High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8. Nano Res. 13, 1627–1635 (2020). https://doi.org/10.1007/s12274-020-2784-y

Download citation

Keywords

  • van der Waals nanowire
  • 1D semiconductor
  • liquid exfoliation
  • micro Raman spectroscopy
  • electronic and optoelectronic device