Gene editing particle system as a therapeutic approach for drug-resistant colorectal cancer


The epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of colorectal cancer (CRC). Anti-EGFR drugs based on antibodies have been widely used for treating CRC through inducing the cell death pathway. However, the majority of CRC patients will inevitably develop drug-resistance during anti-EGFR drug treatment, which is mainly caused by a point mutation in the KRAS oncogene. We developed a nanoliposomal (NL) particle containing the Cas9 protein and a single-guide RNA (sgRNA) complex (Cas9-RNP), for genomic editing of the KRAS mutation. The NL particle is composed of bio-compatible lipid compounds that can effectively encapsulate Cas9-RNP. By modifying the NL particle to include the appropriate antibody, it can specifically recognize EGFR expressing CRC and effectively deliver the gene-editing complexes. The conditions of NL treatment were optimized using a KRAS mutated CRC in vivo mouse model. Mice with KRAS-mutated CRC showed drug resistance against cetuximab, a therapeutic antibody drug. After treating the mice with the KRAS gene-editing NL particles, the implanted tumors showed a dramatic decrease in size. Our results demonstrated that this genomic editing complex has great potential as a therapeutic carrier system for the treatment of drug-resistant cancer caused by a point mutation.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer2015, 136, E359–E386.

    CAS  Article  Google Scholar 

  2. [2]

    Vogelstein, B.; Papadopoulos, N.; Velculescu, V. E.; Zhou, S.; Diaz, L. A.; Kinzler, K. W. Cancer genome landscapes. Science2013, 339, 1546–1558.

    CAS  Article  Google Scholar 

  3. [3]

    McCubrey, J. A.; Steelman, L. S.; Chappell, W. H.; Abrams, S. L.; Wong, E. W. T.; Chang, F. M.; Lehmann, B.; Terrian, D. M.; Milella, M.; Tafuri, A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta2007, 1773, 1263–1284.

    CAS  Article  Google Scholar 

  4. [4]

    Brink, M.; de Goeij, A. F. P. M.; Weijenberg, M. P.; Roemen, G. M. J. M.; Lentjes, M. H. F. M.; Pachen, M. M. M.; Smits, K. M.; de Bruïne, A. P.; Goldbohm, R. A.; van den Brandt, P. A. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis2003, 24, 703–710.

    CAS  Article  Google Scholar 

  5. [5]

    Morris, V. K.; Lucas, F. A.; Overman, M. J.; Eng, C.; Morelli, M. P.; Jiang, Z. Q.; Luthra, R.; Meric-Bernstam, F.; Maru, D.; Scheet, P. et al. Clinicopathologic characteristics and gene expression analyses of non-KRAS 12/13, RAS-mutated metastatic colorectal cancer. Ann. Oncol.2014, 25, 2008–2014.

    CAS  Article  Google Scholar 

  6. [6]

    Jonker, D. J.; O’Callaghan, C. J.; Karapetis, C. S.; Zalcberg, J. R.; Tu, D. S.; Au, H. J.; Berry, S. R.; Krahn, M.; Price, T.; Simes, R. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med.2007, 357, 2040–2048.

    CAS  Article  Google Scholar 

  7. [7]

    Dasari, A.; Messersmith, W. A. New strategies in colorectal cancer: Biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways. Clin. Cancer Res.2010, 16, 3811–3818.

    CAS  Article  Google Scholar 

  8. [8]

    Karapetis, C. S.; Khambata-Ford, S.; Jonker, D. J.; O’Callaghan, C. J.; Tu, D. S.; Tebbutt, N. C.; Simes, R. J.; Chalchal, H.; Shapiro, J. D.; Robitaille, S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.2008, 359, 1757–1765.

    CAS  Article  Google Scholar 

  9. [9]

    Segelov, E.; Chan, D.; Shapiro, J.; Price, T. J.; Karapetis, C. S.; Tebbutt, N. C.; Pavlakis, N. The role of biological therapy in metastatic colorectal cancer after first-line treatment: A meta-analysis of randomised trials. Br. J. Cancer2014, 111, 1122–1231.

    CAS  Article  Google Scholar 

  10. [10]

    Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D.; ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol.2014, 25, iii1–9.

    Google Scholar 

  11. [11]

    Cho, S. W.; Kim, S.; Kim, J. M.; Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol.2013, 31, 230–232.

    CAS  Article  Google Scholar 

  12. [12]

    Fu, Y. F.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol.2013, 31, 822–826.

    CAS  Article  Google Scholar 

  13. [13]

    Kim, H.; Kim, S. T.; Ryu, J.; Kang, B. C.; Kim, J. S.; Kim, S. G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun.2017, 8, 14406.

    CAS  Article  Google Scholar 

  14. [14]

    Liu, J. W.; Jiang, X. M.; Ashley, C.; Brinker, C. J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticlesupported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc.2009, 131, 7567–7569.

    CAS  Article  Google Scholar 

  15. [15]

    Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA2016, 113, 2868–2873.

    CAS  Article  Google Scholar 

  16. [16]

    Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics2014, 4, 81–89.

    CAS  Article  Google Scholar 

  17. [17]

    Haeussler, M.; Schönig, K.; Eckert, H.; Eschstruth, A.; Mianné, J.; Renaud, J. B.; Schneider-Maunoury, S.; Shkumatava, A.; Teboul, L.; Kent, J. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol.2016, 17, 148.

    Article  Google Scholar 

  18. [18]

    van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol.2014, 116, 1088–1107.

    CAS  Article  Google Scholar 

  19. [19]

    Cho, E. Y.; Ryu, J. Y.; Lee, H. A. R.; Hong, S. H.; Park, H. S.; Hong, K. S.; Park, S. G.; Kim, H. P.; Yoon, T. J. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J. Nanobiotechnology2019, 17, 19.

    Article  Google Scholar 

  20. [20]

    Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S. et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control Release2009, 135, 259–267.

    CAS  Article  Google Scholar 

  21. [21]

    Wang, L. H.; Rothberg, K. G.; Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol.1993, 123, 1107–1117.

    CAS  Article  Google Scholar 

  22. [22]

    Gao, H. L.; Yang, Z.; Zhang, S.; Cao, S. J.; Shen, S.; Pang, Z. Q.; Jiang, X. G. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep.2013, 3, 2534.

    CAS  Article  Google Scholar 

  23. [23]

    Kim, W. H.; Yeo, M.; Kim, M. S.; Chun, S. B.; Shin, E. C.; Park, J. H.; Park, I. S. Role of caspase-3 in apoptosis of colon cancer cells induced by nonsteroidal anti-inflammatory drugs. Int. J. Colorectal Dis.2000, 15, 105–111.

    CAS  Article  Google Scholar 

  24. [24]

    Veluchamy, J. P.; Lopez-Lastra, S.; Spanholtz, J.; Bohme, F.; Kok, N.; Heideman, D. A. M.; Verheul, H. M. W.; Di Santo, J. P.; de Gruijl, T. D.; van der Vliet, H. J. In vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of metastatic colorectal cancer. Front. Immunol.2017, 8, 87.

    Google Scholar 

  25. [25]

    Roper, J.; Tammela, T.; Cetinbas, N. M.; Akkad, A.; Roghanian, A.; Rickelt, S.; Almeqdadi, M.; Wu, K.; Oberli, M. A.; Sánchez-Rivera, F. J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol.2017, 35, 569–576.

    CAS  Article  Google Scholar 

  26. [26]

    Yi, L.; Li, J. M. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim. Biophys. Acta2016, 1866, 197–207.

    CAS  Google Scholar 

  27. [27]

    Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control Release2017, 266, 17–26.

    CAS  Article  Google Scholar 

  28. [28]

    Staahl, B. T.; Benekareddy, M.; Coulon-Bainier, C.; Banfal, A. A.; Floor, S. N.; Sabo, J. K.; Urnes, C.; Munares, G. A.; Ghosh, A.; Doudna, J. A. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol.2017, 35, 431–434.

    CAS  Article  Google Scholar 

  29. [29]

    Zuris, J. A.; Thompson, D. B.; Shu, Y. L.; Guilinger, J. P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D. R. Cationic lipid-mediated delivery of proteins enables efficient proteinbased genome editing in vitro and in vivo. Nat. Biotechnol.2015, 33, 73–80.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Industrial Strategic Technology Development Program (Project No. 10047679) of the Ministry of Trade, Industry & Energy (MI, Republic of Korea), partially supported by the GRRC program of Gyeonggi province (GRRC 2016B02, Photonics-Medical Convergence Technology Research Center), and was partly supported by grant (No. 2019R1F1A1058879) from the National Foundation Research of Korea.

Author information



Corresponding authors

Correspondence to Young-Seok Cho or Tae-Jong Yoon.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Choi, Y.J., Won, E. et al. Gene editing particle system as a therapeutic approach for drug-resistant colorectal cancer. Nano Res. 13, 1576–1585 (2020).

Download citation


  • nanoliposome
  • clustered regularly interspaced short palindromic repeat and associated Cas9 nuclease (CRISPR/Cas9)
  • KRAS mutation
  • drug-resistance
  • colorectal cancer