Skip to main content
Log in

Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotubes (BNNTs) show exceptional physical properties including high mechanical strength and thermal conductivity; however, their applications have been restricted due to limited dispersibility in processing solvents. Here, a novel BNNT dispersion method with exceptional dispersibility in a wide range of solvents has been demonstrated by surface polarity modulation through short-molecule pyridine attachment. Nitrogen atoms in pyridine are selectively bonded to electron-deficient boron atoms of the BNNT surface through Lewis acid-base reaction, which changes the surface polarity of BNNTs from neutral to negative. Re-dispersing pyridine-attached BNNTs (Py-BNNTs) create a thick and stable electronic double layer (EDL), resulting in uniform dispersion of BNNTs in solvents with an exceptional solubility parameter range of 18.5–48 MPa1/2. The uniform dispersion of BNNTs is maintained even after the mixing with diverse polymers. Finally, composites incorporating uniformly-distributed BNNTs have been realized, and extraordinary property enhancements have been observed. The thermal conductivity of 20 wt.% Py-BNNT/epoxy composite has been significantly improved by 69.6% and the tensile strength of 2 wt.% Py-BNNT/PVA has been dramatically improved by 75.3%. Our work demonstrates a simple and facile route to dispersing BNNTs in diverse solvents, consequently leading to selective utilization of BNNT dispersed solvents in various application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano2010, 4, 2979–2993.

    Article  CAS  Google Scholar 

  2. Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater.2007, 19, 2413–2432.

    Article  CAS  Google Scholar 

  3. Kim, J. H.; Pham, T. V.; Hwang, J. H.; Kim, C. S.; Kim, M. J. Boron nitride nanotubes: Synthesis and applications. Nano Converg.2018, 5, 17.

    Article  Google Scholar 

  4. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res.2019, 12, 2655–2694.

    Article  CAS  Google Scholar 

  5. Rubio, A.; Corkill, J. L.; Cohen, M. L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B1994, 49, 5081–5084.

    Article  CAS  Google Scholar 

  6. Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett.1994, 28, 335–340.

    Article  CAS  Google Scholar 

  7. Lee, C. H.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D. Y.; Yap, Y. Boron nitride nanotubes: Recent advances in their synthesis, functionalization, and applications. Molecules2016, 21, 922.

    Article  Google Scholar 

  8. Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res.2018, 11, 2366–2378.

    Article  CAS  Google Scholar 

  9. Tang, C. C.; Bando, Y.; Sato, T.; Kurashima, K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun.2002, 2002, 1290–1291.

    Article  Google Scholar 

  10. Lourie, O. R.; Jones, C. R.; Bartlett, B. M.; Gibbons, P. C.; Ruoff, R. S.; Buhro, W. E. CVD growth of boron nitride nanotubes. Chem. Mater.2000, 12, 1808–1810.

    Article  CAS  Google Scholar 

  11. Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition. Nano Lett.2008, 8, 3298–3302.

    Article  CAS  Google Scholar 

  12. Matveev, A. T.; Firestein, K. L.; Steinman, A. E.; Kovalskii, A. M.; Lebedev, O. I.; Shtansky, D. V.; Golberg, D. Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Res.2015, 8, 2063–2072.

    Article  CAS  Google Scholar 

  13. Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett.1996, 76, 4737–4740.

    Article  CAS  Google Scholar 

  14. Narita, I.; Oku, T. Synthesis of boron nitride nanotubes by using YB6 powder. Solid State Commun.2002, 122, 465–468.

    Article  CAS  Google Scholar 

  15. Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Yusa H. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett.1996, 69, 2045–2047.

    Article  CAS  Google Scholar 

  16. Arenal, R.; Stephan, O.; Cochon, J. L.; Loiseau, A. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc.2007, 129, 16183–16189.

    Article  CAS  Google Scholar 

  17. Laude, T.; Matsui, Y.; Marraud, A.; Jouffrey, B. Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett.2000, 76, 3239–3241.

    Article  CAS  Google Scholar 

  18. Chen, H.; Chen, Y.; Liu, Y.; Fu, L.; Huang, C.; Llewellyn, D. Over 1.0 mm-long boron nitride nanotubes. Chem. Phys. Lett.2008, 463, 130–133.

    Article  CAS  Google Scholar 

  19. Li, L. H.; Chen, Y. Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir2010, 26, 5135–5140.

    Article  CAS  Google Scholar 

  20. Chen, Y.; Conway, M.; Williams, J. S.; Zou, J. Large-quantity production of high-yield boron nitride nanotubes. J. Mater. Res.2002, 17, 1896–1899.

    Article  CAS  Google Scholar 

  21. Kim, K. S.; Kingston, C. T.; Hrdina, A.; Jakubinek, M. B.; Guan, J. W.; Plunkett, M.; Simard, B. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano2014, 8, 6211–6220.

    Article  CAS  Google Scholar 

  22. Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Chemically activated boron nitride nanotubes. Chem. Asian J.2009, 4, 1536–1540.

    Article  CAS  Google Scholar 

  23. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Xie, R. G.; Sekiguchi, T.; Golberg, D. Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc.2005, 127, 15996–15997.

    Article  CAS  Google Scholar 

  24. Lee, C. H.; Zhang, D. Y.; Yap, Y. K. Functionalization, dispersion, and cutting of boron nitride nanotubes in water. J. Phys. Chem. C2012, 116, 1798–1804.

    Article  CAS  Google Scholar 

  25. Noei, M.; Asadi, H.; Salari, A. A.; Mahjoob, S. M. R. H. Adsorption of pyridine by using BN nanotube: A DFT study. Indian J. Fund. Appl. Sci.2014, 4, 679–685.

    Google Scholar 

  26. Lim, H.; Suh, B. L.; Kim, M. J.; Yun, H.; Kim, J.; Kim, B. J.; Jang, S. G. High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. J. Membr. Sci.2018, 551, 172–179.

    Article  CAS  Google Scholar 

  27. Sundaram, R.; Scheiner, S.; Roy, A. K.; Kar, T. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions. Phys. Chem. Chem. Phys.2015, 17, 3850–3866.

    Article  CAS  Google Scholar 

  28. Chen, H.; Chen, Y.; Yu, J.; Williams, J. S. Purification of boron nitride nanotubes. Chem. Phys. Lett.2006, 425, 315–319.

    Article  CAS  Google Scholar 

  29. Tiano, A. L.; Park, C.; Lee, J. W.; Luong, H. H.; Gibbons, L. J.; Chu, S. H.; Applin, S.; Gnoffo, P.; Lowther, S.; Kim, H. J. et al. Boron nitride nanotube: Synthesis and applications. In Proceedings of SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, San Diego, USA, 2014, p 906006.

  30. Wang, Y.; Mortimer, M.; Chang, C. H.; Holden, P. A. Alginic acid-aided dispersion of carbon nanotubes, graphene, and boron nitride nanomaterials for microbial toxicity testing. Nanomaterials (Basel)2018, 8, 76.

    Article  Google Scholar 

  31. Augustine, J.; Cheung, T.; Gies, V.; Boughton, J.; Chen, M. H.; Jakubek, Z. J.; Walker, S.; Martinez-Rubi, Y.; Simard, B.; Zou, S. Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Adv.2019, 1, 1914–1923.

    Article  CAS  Google Scholar 

  32. Pal, S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. Functionalization and solubilization of BN nanotubes by interaction with Lewis bases. J. Mater. Chem.2007, 17, 450–452.

    Article  CAS  Google Scholar 

  33. Singh, N. P.; Gupta, V. K.; Singh, A. P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer2019, 180, 121724.

    Article  CAS  Google Scholar 

  34. Saidur, R.; Leong, K. Y.; Mohammed, H. A. A review on applications and challenges of nanofluids. Renew. Sust. Energ. Rev.2011, 15, 1646–1668.

    Article  CAS  Google Scholar 

  35. Trisaksri, V.; Wongwises, S. Critical review of heat transfer characteristics of nanofluids. Renew. Sust. Energ. Rev.2007, 11, 512–523.

    Article  CAS  Google Scholar 

  36. Ferreira, T. H.; Miranda, M. C.; Rocha, Z.; Leal, A. S.; Gomes, D. A.; Sousa, E. M. B. An assessment of the potential use of BNNTs for boron neutron capture therapy. Nanomaterials (Basel)2017, 7, 82.

    Article  Google Scholar 

  37. Lee, W. J.; Clancy, A. J.; Kontturi, E.; Bismarck, A.; Shaffer, M. S. P. Strong and stiff: High-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl. Mater. Interfaces2016, 8, 31500–31504.

    Article  CAS  Google Scholar 

  38. Hu, C. M.; Li, J. L.; Liu, D. G.; Song, R. J.; Gu, J. F.; Prempeh, N.; Li, H. Y. Effects of the coagulation temperature on the properties of wet-spun poly(vinyl alcohol)-graphene oxide fibers. J. Appl. Polym. Sci.2017, 134, 45463.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Fundamental Research Program (PNK6050 and PNK6550) of the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Rae Park or Jae Won Jeong.

Electronic Supplementary Material

12274_2019_2612_MOESM1_ESM.pdf

Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M.S., Jang, MS., Yang, S. et al. Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment. Nano Res. 13, 344–352 (2020). https://doi.org/10.1007/s12274-019-2612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2612-4

Keywords

Navigation