Skip to main content
Log in

Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the important applications of aromatic amines. However, the separation and recycle of catalytic particles to sustainably catalyze are still challenging on account of their small size. In this communication, we report a novel magnetically recyclable catalyst of Sm2Co17/Cu to chemoselectively reduce 3-nitrostyrene into 3-vinylaniline by activating ammonia borane (AB) to yield hydrogen. The Sm2Co17/Cu, composited of 180 nm Sm2Co17 nanomagnet and 10 nm Cu catalyst nanoparticles, shows a high conversion (98%) and a high selectivity (99%) for 3-nitrostyrene under ultrasonic concussion. More importantly, they are easily collected by self-separation method without any magnetic field. As a consequence, the excellent recyclable feature is acquired even underwent 10 cycles. Our approach provides a green strategy to synthesize magnetically recyclable catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc.2011, 133, 12875–12879.

    Article  Google Scholar 

  2. Pingen, D.; Müller, C.; Vogt, D. Direct amination of secondary alcohols using ammonia. Angew. Chem., Int. Ed.2010, 49, 8130–8133.

    Article  CAS  Google Scholar 

  3. Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev.1996, 96, 2035–2052.

    Article  CAS  Google Scholar 

  4. Ghimire, P. P.; Zhang, L. P.; Kinga, U. A.; Guo, Q. Y.; Jiang, B. J.; Jaroniec, M. Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. J. Mater. Chem. A2019, 7, 9618–9628.

    Article  CAS  Google Scholar 

  5. Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B: Environ.2018, 227, 386–408.

    Article  CAS  Google Scholar 

  6. Tan, Y.; Liu, X. Y.; Zhang, L. L.; Wang, A. Q.; Li, L.; Pan, X. L.; Miao, S.; Haruta, M.; Wei, H. S.; Wang, H. et al. ZnAl-hydrotalcite-supported Au25 nanoclusters as precatalysts for chemoselective hydrogenation of 3-nitrostyrene. Angew. Chem., Int. Ed.2017, 56, 2709–2713.

    Article  CAS  Google Scholar 

  7. Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A2016, 4, 12416–12424.

    Article  CAS  Google Scholar 

  8. Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal.2014, 4, 1441–1450.

    Article  CAS  Google Scholar 

  9. Wang, L.; Zhang, J.; Wang, H.; Shao, Y.; Liu, X. H.; Wang, Y. Q.; Lewis, J. P.; Xiao, F. S. Activity and selectivity in nitroarene hydrogenation over Au nanoparticles on the edge/corner of anatase. ACS Catal.2016, 6, 4110–4116.

    Article  CAS  Google Scholar 

  10. Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D. L.; Liu, C.; Ignacio-de Leon, P. A.; Perras, F. A.; Pruski, M.; Stair, P. C.; Delferro, M. Chemoselective hydrogenation with supported organoplatinum(IV) catalyst on Zn(II)-modified silica. J. Am. Chem. Soc.2018, 140, 3940–3951.

    Article  CAS  Google Scholar 

  11. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun.2014, 5, 5634.

    Article  CAS  Google Scholar 

  12. Tamiolakis, I.; Fountoulaki, S.; Vordos, N.; Lykakis, I. N.; Armatas, G. S. Mesoporous Au–TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. J. Mater. Chem. A2013, 1, 14311–14319.

    Article  CAS  Google Scholar 

  13. Corma, A.; Serna, P.; Concepcion, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc.2008, 130, 8748–8753.

    Article  CAS  Google Scholar 

  14. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science2013, 342, 1073–1076.

    Article  CAS  Google Scholar 

  15. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem.2013, 5, 537–543.

    Article  CAS  Google Scholar 

  16. Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res.2016, 9, 1879–1890.

    Article  CAS  Google Scholar 

  17. Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein; H.; Anarjan; N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res.2016, 9, 2203–2225.

    Article  CAS  Google Scholar 

  18. Ai, Y. J; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res.2018, 11, 287–299.

    Article  CAS  Google Scholar 

  19. Qin, Z.; Ma, Z. H.; Zhi, J. K.; Fu, Y. L. A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid. Rare Met.2019, 38, 764–769.

    Article  CAS  Google Scholar 

  20. Ma, Z. H.; Tian, H.; Cong, L. Y.; Wu, Q.; Yue, M.; Sun, S. H. A flamereaction method for the large-scale synthesis of high-performance SmxCoy nanomagnets. Angew. Chem., Int. Ed.2019, 58, 14509–14512.

    Article  CAS  Google Scholar 

  21. Ma, Z. H.; Yue, M.; Wu, Q.; Li, C. L.; Yu, Y. S. Designing shape anisotropic SmCo5 particles by chemical synthesis to reveal the morphological evolution mechanism. Nanoscale2018, 10, 10377–10382.

    Article  CAS  Google Scholar 

  22. Zhang, T. L.; Liu, H. Y.; Ma, Z. H.; Jiang, C. B. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J. Alloys Compd.2015, 637, 253–256.

    Article  CAS  Google Scholar 

  23. Ma, Z. H.; Zhang, T. L.; Wang, H.; Jiang, C. B. Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met.2018, 37, 1021–1026.

    Article  CAS  Google Scholar 

  24. Ma, Z. H.; Zhang, T. L.; Jiang, C. B. A facile synthesis of high performance SmCo5 nanoparticles. Chem. Eng. J.2015, 264, 610–616.

    Article  CAS  Google Scholar 

  25. Ma, Z. H.; Yang, S. X.; Zhang, T. L.; Jiang, C. B. The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chem. Eng. J.2016, 304, 993–999.

    Article  CAS  Google Scholar 

  26. Ma, Z. H.; Liang, J. M.; Ma, W.; Cong, L. Y.; Wu, Q.; Yue, M. Chemically synthesized anisotropic SmCo5 nanomagnets with a large energy product. Nanoscale2019, 11, 12484–12488.

    Article  CAS  Google Scholar 

  27. Shen, M. Q.; Liu, H.; Yu, C.; Yin, Z. Y.; Muzzio, M.; Li, J. R.; Xi, Z.; Yu, Y. S.; Sun, S. H. Room-temperature chemoselective reduction of 3-nitrostyrene to 3-vinylaniline by ammonia borane over Cu nanoparticles. J. Am. Chem. Soc.2018, 140, 16460–16463.

    Article  CAS  Google Scholar 

  28. Liu, H.; Yu, Y. S.; Yang, W. W.; Lei, W. J.; Gao, M. Y.; Guo, S. J. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nanoscale2017, 9, 9305–9309.

    Article  CAS  Google Scholar 

  29. Liu, H.; Guo, Y.; Yu, Y. S.; Yang, W. W.; Shen, M. Q.; Liu, X. Y.; Geng, S.; Li, J. R.; Yu, C.; Yin, Z. Y. et al. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J. Mater. Chem. A2018, 6, 17323–17328.

    Article  CAS  Google Scholar 

  30. Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A2018, 6, 4611–4616.

    Article  CAS  Google Scholar 

  31. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater.2016, 15, 564–569.

    Article  CAS  Google Scholar 

  32. Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A2018, 6, 1979–1984.

    Article  CAS  Google Scholar 

  33. Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun.2019, 10, 3787.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51701109 and 51806115), Natural Science Foundation of Beijing Municipality, China (No. 2192007), the China Postdoctoral Science Foundation (No. 2018M641132), International S&T Cooperation Program of China (No. 2015DFG52020), Key Program of National Natural Science Foundation of China (51331003), and Program of Disciplines Construction in Beijing (No. PXM2019_014204_500031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yue.

Electronic Supplementary Material

12274_2019_2555_MOESM1_ESM.pdf

Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Liu, H. & Yue, M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 12, 3085–3088 (2019). https://doi.org/10.1007/s12274-019-2555-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2555-9

Keywords

Navigation