Skip to main content

Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires

Abstract

Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires.

This is a preview of subscription content, access via your institution.

References

  1. Imamoḡlu, A.; Awschalom, D. D.; Burkard, G.; DiVincenzo, D. P.; Loss, D.; Sherwin, M.; Small, A. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett.1999, 83, 4204–4207.

    Google Scholar 

  2. Loss, D.; DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A1998, 57, 120–126.

    CAS  Google Scholar 

  3. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science2001, 292, 1897–1899.

    CAS  Google Scholar 

  4. Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science2001, 293, 1455–1457.

    CAS  Google Scholar 

  5. Menzel, A.; Subannajui, K.; Güder, F.; Moser, D.; Paul, O.; Zacharias, M. Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater.2011, 21, 4342–4348.

    CAS  Google Scholar 

  6. Wang, X. D.; Li, Z. Z.; Zhuo, M. P.; Wu, Y. S.; Chen, S.; Yao, J. N.; Fu, H. B. Tunable near-infrared organic nanowire nanolasers. Adv. Funct. Mater.2017, 27, 1703470.

    Google Scholar 

  7. Ali, H.; Zhang, Y. Y.; Tang, J.; Peng, K.; Sun, S. B.; Sun, Y.; Song, F. L.; Falak, A.; Wu, S. Y.; Qian, C. J. et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small2018, 14, 1704429.

    Google Scholar 

  8. Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater.2011, 23, 198–215.

    CAS  Google Scholar 

  9. Lee, J.; Jo, S. B.; Kim, M.; Kim, H. G.; Shin, J.; Kim, H.; Cho, K. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells. Adv. Mater.2014, 26, 6706–6714.

    CAS  Google Scholar 

  10. Hoang, T. B.; Titova, L. V.; Yarrison-Rice, J. M.; Jackson, H. E.; Govorov, A. O.; Kim, Y.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Smith, L. M. Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett.2007, 7, 588–595.

    CAS  Google Scholar 

  11. Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett.2008, 93, 183118.

    Google Scholar 

  12. Cross, R. B. M.; De Souza, M. M. Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett.2006, 89, 263513.

    Google Scholar 

  13. Smith, L. M.; Hoang, T. B.; Titova, L. V.; Jackson, H. E.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J.; Kim, Y.; Joyce, H. J.; Jagadish, C. Spatially resolved photoluminescence imaging of CdS and GaAs/AlGaAs nanowires. AIP Conf. Proc.2007, 893, 869–870.

    CAS  Google Scholar 

  14. Xue, H. L.; Kong, X. Z.; Liu, Z. R.; Liu, C. X.; Zhou, J. R.; Chen, W. Y.; Ruan, S. P.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett.2007, 90, 201118.

    Google Scholar 

  15. Rosenwaks, Y.; Shapira, Y.; Huppert, D. Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. Phys. Rev. B1992, 45, 9108–9119.

    CAS  Google Scholar 

  16. Casey, H. C. Jr.; Buehler, E. Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett.1977, 30, 247–249.

    CAS  Google Scholar 

  17. Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett.2009, 9, 648–654.

    CAS  Google Scholar 

  18. Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett.2010, 10, 1198–1201.

    CAS  Google Scholar 

  19. Bouwes Bavinck, M.; Jöns, K. D.; Zielinski, M.; Patriarche, G.; Harmand, J. C.; Akopian, N.; Zwiller, V. Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett.2016, 16, 1081–1085.

    CAS  Google Scholar 

  20. Dick, K. A.; Thelander, C.; Samuelson, L.; Caroff, P. Crystal phase engineering in single InAs nanowires. Nano Lett.2010, 10, 3494–3499.

    CAS  Google Scholar 

  21. Assali, S.; Gagliano, L.; Oliveira, D. S.; Verheijen, M. A.; Plissard, S. R.; Feiner, L. F.; Bakkers, E. P. A. M. Exploring crystal phase switching in GaP nanowires. Nano Lett.2015, 15, 8062–8069.

    CAS  Google Scholar 

  22. Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D. Optical signatures of coupled quantum dots. Science2006, 311, 636–639.

    CAS  Google Scholar 

  23. Kato, Y.; Myers, R. C.; Driscoll, D. C.; Gossard, A. C.; Levy, J.; Awschalom, D. D. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science2003, 299, 1201–1204.

    CAS  Google Scholar 

  24. Pingenot, J.; Pryor, C. E.; Flatté, M. E. Method for full Bloch sphere control of a localized spin via a single electrical gate. Appl. Phys. Lett.2008, 92, 222502.

    Google Scholar 

  25. Salis, G.; Kato, Y.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C.; Awschalom, D. D. Electrical control of spin coherence in semiconductor nanostructures. Nature2001, 414, 619–622.

    CAS  Google Scholar 

  26. Jovanov, V.; Eissfeller, T.; Kapfinger, S.; Clark, E. C.; Klotz, F.; Bichler, M.; Keizer, J. G.; Koenraad, P. M.; Abstreiter, G.; Finley, J. J. Observation and explanation of strong electrically tunable exciton g factors in composition engineered In(Ga)As quantum dots. Phys. Rev. B2011, 83, 161303.

    Google Scholar 

  27. Godden, T. M.; Quilter, J. H.; Ramsay, A. J.; Wu, Y. W.; Brereton, P.; Luxmoore, I. J.; Puebla, J.; Fox, A. M.; Skolnick, M. S. Fast preparation of a single-hole spin in an InAs/GaAs quantum dot in a Voigt-geometry magnetic field. Phys. Rev. B2012, 85, 155310.

    Google Scholar 

  28. Bennett, A. J.; Pooley, M. A.; Cao, Y. M.; Sköld, N.; Farrer, I.; Ritchie, D. A.; Shields, A. J. Voltage tunability of single-spin states in a quantum dot. Nat. Commun.2013, 4, 1522.

    Google Scholar 

  29. Battiato, S.; Wu, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology2019, 30, 194004.

    CAS  Google Scholar 

  30. Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D: Appl. Phys.2010, 43, 445402.

    Google Scholar 

  31. Reimer, M. E.; Bulgarini, G.; Akopian, N.; Hocevar, M.; Bavinck, M. B.; Verheijen, M. A.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun.2012, 3, 737.

    Google Scholar 

  32. Lagoudakis, K. G.; McMahon, P. L.; Fischer, K. A.; Puri, S.; Müller, K.; Dalacu, D.; Poole, P. J.; Reimer, M. E.; Zwiller, V.; Yamamoto, Y. Initialization of a spin qubit in a site-controlled nanowire quantum dot. New J. Phys.2016, 18, 053024.

    Google Scholar 

  33. Haffouz, S.; Zeuner, K. D.; Dalacu, D.; Poole, P. J.; Lapointe, J.; Poitras, D.; Mnaymneh, K.; Wu, X. H.; Couillard, M.; Korkusinski, M. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett.2018, 18, 3047–3052.

    CAS  Google Scholar 

  34. Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; M. Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature. 2008, 456, 369–372.

    CAS  Google Scholar 

  35. Murayama, M.; Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B1994, 49, 4710–4724.

    CAS  Google Scholar 

  36. Perera, S.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X. et al. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl. Phys. Lett.2008, 93, 053110.

    Google Scholar 

  37. Zhang, L. J.; Luo, J. W.; Zunger, A.; Akopian, N.; Zwiller, V.; Harmand, J. C. Wide InP nanowires with wurtzite/zincblende superlattice segments are type-II whereas narrower nanowires become type-I: An atomistic pseudopotential calculation. Nano Lett.2010, 10, 4055–4060.

    CAS  Google Scholar 

  38. Kim, C. W.; Stringfellow, G. B.; Sadwick, L. P. CBE growth of InP using BPE and TBP: a comparative study. J. Cryst. Growth.1996, 164, 104–111.

    CAS  Google Scholar 

  39. Mrowinski, P.; Musial, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sęk, G. Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm. Appl. Phys. Lett.2015, 106, 053114.

    Google Scholar 

  40. Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A. A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T. L. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B2002, 65, 195315.

    Google Scholar 

  41. Brunner, K.; Abstreiter, G.; Böhm, G.; Tränkle, G.; Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett., 1994, 73, 1138–1141.

    CAS  Google Scholar 

  42. Fontana, Y.; Corfdir, P.; Van Hattem, B.; Russo-Averchi, E.; Heiss, M.; Sonderegger, S.; Magen, C.; Arbiol, J.; Phillips, R. T.; Morral, A. F. I. Exciton footprint of self-assembled AlGaAs quantum dots in core-shell nanowires. Phys. Rev. B2014, 90, 075307.

    Google Scholar 

  43. Tang, J.; Cao, S.; Gao, Y. A.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett.2014, 105, 041109.

    Google Scholar 

  44. Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater.2013, 12, 483–493.

    CAS  Google Scholar 

  45. Witek, B. J.; Heeres, R. W.; Perinetti, U.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys. Rev. B2011, 84, 195305.

    Google Scholar 

  46. Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B2007, 76, 033301.

    Google Scholar 

  47. van Bree, J.; Silov, A. Y.; van Maasakkers, M. L.; Pryor, C. E.; Flatté, M. E.; Koenraad, P. M. Anisotropy of electron and hole g tensors of quantum dots: An intuitive picture based on spin-correlated orbital currents. Phys. Rev. B2016, 93, 035311.

    Google Scholar 

  48. Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; Zhukov, E. A.; Semina, M. A.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Bayer, M. Large anisotropy of electron and hole g factors in infrared-emitting InAs/InAlGaAs self-assembled quantum dots. Phys. Rev. B2016, 93, 125302.

    Google Scholar 

  49. Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B1998, 57, 9088–9096.

    CAS  Google Scholar 

  50. Cao, S.; Tang, J.; Sun, Y.; Peng, K.; Gao, Y. A.; Zhao, Y. H.; Qian, C. J.; Sun, S. B.; Ali, H.; Shao, Y. T. et al. Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects. Nano Res.2016, 9, 306–316.

    CAS  Google Scholar 

  51. Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B2002, 66, 193303.

    Google Scholar 

  52. van Bree, J.; Silov, A. Y.; Koenraad, P. M.; Flatté, M. E. Geometric and compositional influences on spin-orbit induced circulating currents in nanostructures. Phys. Rev. B2014, 90, 165306.

    Google Scholar 

  53. Buscemi, F.; Royo, M.; Bertoni, A.; Goldoni, G. Magnetophotoluminescence in GaAs/AlAs core-multishell nanowires: A theoretical investigation. Phys. Rev. B2015, 92, 165302.

    Google Scholar 

  54. Green, M. Solution routes to III–V semiconductor quantum dots. Curr. Opin. Solid State Mater. Sci.2002, 6, 355–363.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11934019, 61675228, 11721404, 51761145104, and 11874419), the Strategic Priority Research Program, the Instrument Developing Project and the Interdisciplinary Innovation Team of the Chinese Academy of Sciences (Nos. XDB28000000 and YJKYYQ20180036), the Key RD Program of Guangdong Province (No. 2018B030329001), and the Key Laboratory Fund (No. 614280303051701). We acknowledge financial support from the SUPERTOP project, QUANTERA ERA-NET Cofund in Quantum Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulai Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Peng, K., Battiato, S. et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Res. 12, 2842–2848 (2019). https://doi.org/10.1007/s12274-019-2522-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2522-5

Keywords

  • g-factor tensor
  • diamagnetic coefficient
  • crystal-phase quantum dot
  • InP NWs