Skip to main content
Log in

Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We reported the growth of horizontally aligned nitrogen-doped single-walled carbon nanotubes (SWNTs) on quartz substrates. The synthesized SWNTs were comprehensively characterized at the single nanotube level. Owing to the highly aligned nature of the nanotubes, we were able to investigate the diameter dependent doping mechanism through systematic resonant Raman spectroscopy studies. Other than the formerly found narrowing effect by N-doping, we proposed that the nanotube diameter affects the introduction of N atoms into the carbon lattice in an elaborate way. The obtained doping level increased along with the nanotube diameter but lost the increasing trend when the diameter became larger and experienced a slight decrease after reaching the local peak value. These insights about the heteroatom doping into the carbon nanotubes could benefit the development of the carbon nanotube based functional materials and extend their application in a broad range of areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer: Berlin Heidelberg, 2008.

    Book  Google Scholar 

  2. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    Article  Google Scholar 

  3. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  4. Liu, Y.; Shen, Y. T.; Sun, L. T.; Li, J. C.; Liu, C.; Ren, W. C.; Li, F.; Gao, L. B.; Chen, J.; Liu, F. C. et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016, 7, 10921.

    Article  Google Scholar 

  5. Chen, T.; Cheng, B. R.; Zhu, G. Y.; Chen, R. P.; Hu, Y.; Ma, L. B.; Lv, H. L.; Wang, Y. R.; Liang, J.; Tie, Z. X. et al. Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 2017, 17, 437–444.

    Article  Google Scholar 

  6. Blase, X.; Charlier, J. C.; De Vita, A.; Car, R.; Redlich, P.; Terrones, M.; Hsu, W. K.; Terrones, H.; Carroll, D. L.; Ajayan, P. M. Boron-mediated growth of long helicity-selected carbon nanotubes. Phys. Rev. Lett. 1999, 83, 5078–5081.

    Article  Google Scholar 

  7. McGuire, K.; Gothard, N.; Gai, P. L.; Dresselhaus, M. S.; Sumanasekera, G.; Rao, A. M. Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 2005, 43, 219–227.

    Article  Google Scholar 

  8. Lin, H.; Arenal, R.; Enouz-Vedrenne, S.; Stephan, O.; Loiseau, A. Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique. J. Phys. Chem. C 2009, 113, 9509–9511.

    Article  Google Scholar 

  9. Cruz-Silva, E.; Cullen, D. A.; Gu, L.; Romo-Herrera, J. M.; Muñoz-Sandoval, E.; López-Urías, F.; Sumpter, B. G.; Meunier, V.; Charlier, J. C.; Smith, D. J. et al. Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. ACS Nano 2008, 2, 441–448.

    Article  Google Scholar 

  10. Ayala, P.; Arenal, R.; Rümmeli, M.; Rubio, A.; Pichler, T. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 2010, 48, 575–586.

    Article  Google Scholar 

  11. Campos-Delgado, J.; Maciel, I. O.; Cullen, D. A.; Smith, D. J.; Jorio, A.; Pimenta, M. A.; Terrones, H.; Terrones, M. Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. ACS Nano 2010, 4, 1696–1702.

    Article  Google Scholar 

  12. Glerup, M.; Steinmetz, J.; Samaille, D.; Stéphan, O.; Enouz, S.; Loiseau, A.; Roth, S.; Bernier, P. Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 2004, 387, 193–197.

    Article  Google Scholar 

  13. He, M. S.; Zhou, S.; Zhang, J.; Liu, Z. F.; Robinson, C. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J. Phys. Chem. B 2005, 109, 9275–9279.

    Article  Google Scholar 

  14. Liu, Y.; Jin, Z.; Wang, J. Y.; Cui, R. L.; Sun, H.; Peng, F.; Wei, L.; Wang, Z. X.; Liang, X. L.; Peng, L. M. et al. Nitrogen-doped single-walled carbon nanotubes grown on substrates: Evidence for framework doping and their enhanced properties. Adv. Funct. Mater. 2011, 21, 986–992.

    Article  Google Scholar 

  15. Pint, C. L.; Sun, Z. Z.; Moghazy, S.; Xu, Y. Q.; Tour, J. M.; Hauge, R. H. Supergrowth of nitrogen-doped single-walled carbon nanotube arrays: Active species, dopant characterization, and doped/undoped heterojunctions. ACS Nano 2011, 5, 6925–6934.

    Article  Google Scholar 

  16. Maciel, I. O.; Anderson, N.; Pimenta, M. A.; Hartschuh, A.; Qian, H. H.; Terrones, M.; Terrones, H.; Campos-Delgado, J.; Rao, A. M.; Novotny, L. et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 2008, 7, 878–883.

    Article  Google Scholar 

  17. Elías, A. L.; Ayala, P.; Zamudio, A.; Grobosch, M.; Cruz-Silva, E.; Romo-Herrera, J. M.; Campos-Delgado, J.; Terrones, H.; Pichler, T.; Terrones, M. Spectroscopic characterization of N-doped single-walled carbon nanotube strands: An X-ray photoelectron spectroscopy and Raman study. J. Nanosci. Nanotechnol. 2010, 10, 3959–3964.

    Article  Google Scholar 

  18. Maciel, I. O.; Pimenta, M. A.; Terrones, M.; Terrones, H.; Campos-Delgado, J.; Jorio, A. The two peaks G’ band in carbon nanotubes. Phys. Status Solidi B 2008, 245, 2197–2200.

    Article  Google Scholar 

  19. Maciel, I. O.; Campos-Delgado, J.; Cruz-Silva, E.; Pimenta, M. A.; Sumpter, B. G.; Meunier, V.; López-Urías, F.; Muñoz-Sandoval, E.; Terrones, H.; Terrones, M. et al. Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. Nano Lett. 2009, 9, 2267–2272.

    Article  Google Scholar 

  20. Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

    Article  Google Scholar 

  21. Meshot, E. R.; Plata, D. L.; Tawfick, S.; Zhang, Y. Y.; Verploegen, E. A.; Hart, A. J. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 2009, 3, 2477–2486.

    Article  Google Scholar 

  22. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

    Article  Google Scholar 

  23. Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288–4292.

    Article  Google Scholar 

  24. Lu, C. G.; Liu, J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 2006, 110, 20254–20257.

    Article  Google Scholar 

  25. Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J. Mater. Chem. 2011, 21, 11815–11821.

    Article  Google Scholar 

  26. Sumpter, B. G.; Meunier, V.; Romo-Herrera, J. M.; Cruz-Silva, E.; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M. Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 2007, 1, 369–375.

    Article  Google Scholar 

  27. Tian, G. L.; Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Self-organization of nitrogen-doped carbon nanotubes into double-helix structures. Carbon 2012, 50, 5323–5330.

    Article  Google Scholar 

  28. Villalpando-Paez, F.; Zamudio, A.; Elias, A. L.; Son, H.; Barros, E. B.; Chou, S. G; Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Kong, J. et al. Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 424, 345–352.

    Article  Google Scholar 

  29. Dresselhaus, M. S.; Dresselhaus, G; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  30. Terrones, M.; Filho, A. G. S.; Rao, A. M. Doped carbon nanotubes: Synthesis, characterization and applications. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin, Heidelberg, 2007; pp 531–566.

    Chapter  Google Scholar 

  31. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

    Article  Google Scholar 

  32. Cançado, L. G.; Pimenta, M. A.; Saito, R.; Jorio, A.; Ladeira, L. O.; Grueneis, A.; Souza-Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 2002, 66, 035415.

    Article  Google Scholar 

  33. Souza Filho, A. G.; Jorio, A.; Samsonidze, G. G.; Dresselhaus, G.; Pimenta, M. A.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B.B.; Saito, R. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Phys. Rev. B 2003, 67, 035427.

    Article  Google Scholar 

  34. Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

    Article  Google Scholar 

Download references

Acknowledgement

This work is jointly supported by the National Natural Science Foundation of China (Nos. 51802161, 51772157, and 61504062), Natural Science Foundation of Jiangsu Province (No. BK20160886), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX03001), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Synergistic Innovation Center for Organic Electronics and Information Displays, Jiangsu Province “Six Talent Peak” (No. 2014-XCL-014), Qing Lan Project of Jiangsu Province, Jiangsu Higher Education Institutions NSF (No. 17KJB430026), Scientific Research Foundation of NUPT (No. NY217012), Graduate Education Innovation Project in Jiangsu Province (No. CXZZ12_0461) and Keypoint Research and Invention Program of Jiangsu Province (No. BE2018010-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwen Ma or Jie Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, Y., Zhang, X. et al. Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays. Nano Res. 12, 1845–1850 (2019). https://doi.org/10.1007/s12274-019-2445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2445-1

Keywords

Navigation