A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance


The development of compressible supercapacitors (SCs) that is tolerant to wide temperature range has been severely hindered due to the poor ionic conductivity and absence of extra functions in conventional polymer electrolytes. Herein, a highly conductive and compressible hydrogel polyelectrolyte has been prepared from polyacrylamide cross-linked by methacrylated graphene oxide (MGO-PAM) and the polyelectrolyte can maintain its excellent elasticity at −30 °C as well as its original shape at 100 °C. As a result, the SC based on the MGO-PAM polyelectrolyte outperformed those fabricated with the conventional poly(vinyl alcohol) (PVA)/H2SO4 electrolyte over a wide temperature window between −30 and 100 °C. Meanwhile, the device shows an excellent cycling stability (capacitance retention of 93.3% after 8,000 cycles at −30 °C and 76.5 % after 4,000 cycles under 100 °C) and a reversible compressibility (a high capacitance retention of 94.1% under 80% compression). Therefore, the MGO-PAM polyelectrolyte enables the fabrication of compressible SCs with a wide operating temperature, rendering new insights for developing next-generation robust and multifunctional energy-storage devices.

This is a preview of subscription content, access via your institution.


  1. [1]

    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  2. [2]

    Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  Google Scholar 

  3. [3]

    Yu, D. S; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

    Article  Google Scholar 

  4. [4]

    Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  Google Scholar 

  5. [5]

    Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

    Article  Google Scholar 

  6. [6]

    Choi, C.; Kim, K. M.; Kim, K. J.; Lepró, X.; Spinks, G. M.; Baughman R. H.; Kim, S. J. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 2016, 7, 13811.

    Article  Google Scholar 

  7. [7]

    Li, C.; Islam, M.; Moore, J.; Sleppy, J.; Morrison, C.; Konstantinov, K.; Dou, S. X.; Renduchintala, C.; Thomas, J. Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 2016, 7, 13319.

    Article  Google Scholar 

  8. [8]

    Lu, Z.; Foroughi, J.; Wang, C. Y.; Long H. R.; Wallace, G. G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 2017, 8, 1702047.

    Article  Google Scholar 

  9. [9]

    Li, L.; Zhang, J. B.; Peng, Z. W.; Li, Y. L.; Gao, C. T.; Ji, Y. S.; Ye, R. Q.; Kim, N. D.; Zhong, Q. F.; Yang, Y. et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 2016, 28, 838–845.

    Article  Google Scholar 

  10. [10]

    Yu, H. J.; Wu, J. H.; Fan, L. Q.; Xu, K. Q.; Zhong, X.; Lin Y. Z.; Lin, J. M. Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte. Electrochim. Acta 2011, 56, 6881–6886.

    Article  Google Scholar 

  11. [11]

    Kufian, M. Z.; Majid S. R.; Arof, A. K. Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 2007, 13, 231–234.

    Article  Google Scholar 

  12. [12]

    Fei, H. J.; Yang, C. Y.; Bao H.; Wang, G. C. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes. J. Power Sources 2014, 266, 488–495.

    Article  Google Scholar 

  13. [13]

    Lv, Q. Y.; Chi, K.; Zhang, Y.; Xiao, F.; Xiao, J. W.; Wang S.; Lohc, K. P. Ultrafast charge/discharge solid-state thin-film supercapacitors via regulating the microstructure of transition-metal-oxide. J. Mater. Chem. A. 2017, 5, 2759–2767.

    Article  Google Scholar 

  14. [14]

    Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

    Article  Google Scholar 

  15. [15]

    Huang, Y.; Zhong, M.; Shi, F. K.; Liu, X. Y.; Tang, Z. J.; Wang, Y. K.; Huang, Y.; Hou, H. Q.; Xie X. M.; Zhi, C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9141–9145.

    Article  Google Scholar 

  16. [16]

    Wang, Z. K.; Pan, Q. M. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater. 2017, 27, 1700690.

    Article  Google Scholar 

  17. [17]

    Li, H. L.; Lv, T.; Li, N.; Yao, Y.; Liu K.; Chen, T. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale 2017, 9, 18474–18481.

    Article  Google Scholar 

  18. [18]

    Liu, F. T.; Wang J. C.; Pan, Q. M. An all-in-one self-healable capacitor with superior performance. J. Mater. Chem. A 2018, 6, 2500–2506.

    Article  Google Scholar 

  19. [19]

    Tao, F.; Qin, L. M.; Wang Z. K.; Pan, Q M. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 15541–15548.

    Article  Google Scholar 

  20. [20]

    Liu, M. J.; Wang S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  Google Scholar 

  21. [21]

    Abbas, Q.; Béguin, F. Sustainable carbon/carbon supercapacitors operating down to −40 °C in aqueous electrolyte made with cholinium salt. ChemSusChem 2018, 11, 975–984.

    Article  Google Scholar 

  22. [22]

    Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

    Article  Google Scholar 

  23. [23]

    Zang, X. B.; Zhang, R. J.; Zhen, Z.; Lai, W. H.; Yang, C.; Kang F. Y.; Zhu, H. W. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy 2017, 40, 224–232.

    Article  Google Scholar 

  24. [24]

    Liu, W. W.; Yan, X. B.; Lang J. W.; Xue, Q. J. Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets. J. Mater. Chem. 2012, 22, 8853–8861.

    Article  Google Scholar 

  25. [25]

    Feng, L. X.; Wang, K.; Zhang, X.; Sun, X. Z.; Li, C.; Ge X. B.; Ma, Y. W. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 2018, 28, 1704463.

    Article  Google Scholar 

  26. [26]

    Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.

    Article  Google Scholar 

  27. [27]

    Dou, Q. Y.; Lei, S. L.; Wang, D. W.; Zhang, Q. N.; Xiao, D. W.; Guo, H. W.; Wang, A. P.; Yang, H.; Li, Y. L.; Shi S. Q. et al. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 2018, 11, 3212–3219.

    Article  Google Scholar 

  28. [28]

    Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama Y.; Yamada, A. Hydratemelt electrolytes for high-energy-density aqueous batteries. Nat. Energy 2016, 1, 16129.

    Article  Google Scholar 

  29. [29]

    Dou, Q. Y.; Liu, L. Y.; Yang, B. J.; Lang J. W.; Yan, X. B. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat. Commun. 2017, 8, 2188.

    Article  Google Scholar 

  30. [30]

    Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    Article  Google Scholar 

  31. [31]

    Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010, 10, 4025–4031.

    Article  Google Scholar 

  32. [32]

    Liu, D. Q.; Li, Q. W.; Zhao, H. Z. Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 11471–11478.

    Article  Google Scholar 

  33. [33]

    Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.

    Article  Google Scholar 

  34. [34]

    Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.

    Article  Google Scholar 

  35. [35]

    Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

    Article  Google Scholar 

  36. [36]

    He, D.; Song, L.; Lv, L. X.; Zhang, Z. P.; Qu, L. T. Superelastic air-bubbled graphene foam monoliths as structural buffer for compressible high-capacity anode materials in lithium-ion batteries. Chem. Eng. J. 2018, 331, 704–711.

    Article  Google Scholar 

  37. [37]

    Wang, X. P.; Gao, J.; Cheng, Z. H.; Chen, N.; Qu, L. T. A responsive battery with controlled energy release. Angew. Chem., Int. Ed. 2016, 55, 14643–14647.

    Article  Google Scholar 

  38. [38]

    Shao, C. X.; Xu, T.; Gao, J.; Liang, Y.; Zhao, Y.; Qu, L. T. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 2017, 9, 12324–12329.

    Article  Google Scholar 

  39. [39]

    Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

    Article  Google Scholar 

  40. [40]

    Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 1803046.

    Google Scholar 

  41. [41]

    Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn Zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

    Article  Google Scholar 

  42. [42]

    Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

    Article  Google Scholar 

  43. [43]

    Rong, Q. F.; Lei, W. W.; Huang J.; Liu, M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-State supercapacitors. Adv. Energy Mater. 2018, 8, 1801967.

    Article  Google Scholar 

  44. [44]

    Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26, 2909–2913.

    Article  Google Scholar 

  45. [45]

    Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    Article  Google Scholar 

  46. [46]

    Jin, X. T.; Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A graphene oxide-mediated polyelectrolyte with high ionconductivity for highly stretchable and self-healing all-solid-state supercapacitors. J. Mater. Chem. A. 2018, 6, 19463–19469.

    Article  Google Scholar 

  47. [47]

    Yu, M. H.; Zhang, Y. F.; Zeng, Y. X.; Balogun, M. S.; Mai, K. C.; Zhang, Z. S.; Lu, X. H.; Tong, Y. X. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 2014, 26, 4724–4729.

    Article  Google Scholar 

  48. [48]

    Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 2003, 36, 5732–5741.

    Article  Google Scholar 

  49. [49]

    Chen, Y. J.; Ozaki Y.; Czarnecki, M. A. Molecular structure and hydrogen bonding in pure liquid ethylene glycol and ethylene glycol-water mixtures studied using NIR spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 18694–18701.

    Article  Google Scholar 

  50. [50]

    Conrad, F. H.; Hill, E. F.; Ballman, E. A. Freezing points of the system ethylene glycol-methanol-water. Ind. Eng. Chem. 1940, 32, 542–543.

    Article  Google Scholar 

  51. [51]

    Spangler, J.; Davies, E. Freezing points, densities, and refractive indexes of system glycerol-ethylene glycol-water. Ind. Eng. Chem. Anal. Ed. 1943, 15, 96–99.

    Article  Google Scholar 

  52. [52]

    Hu, M. M.; Wang, J. Q.; Liu, J.; Zhang, J. H.; Ma, X.; Huang, Y. An intrinsically compressible and stretchable all-in-one configured supercapacitor. Chem. Commun. 2018, 54, 6200–6203.

    Article  Google Scholar 

  53. [53]

    Kumar, R. M.; Baskar, P.; Balamurugan, K.; Das, S.; Subramanian V. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 2012, 116, 4239–4247.

    Article  Google Scholar 

  54. [54]

    Wu, J. F.; Zhang, Q. E.; Wang, J. J.; Huang X. P.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286.

    Article  Google Scholar 

  55. [55]

    Liu, N.; Su, Y. L.; Wang, Z. Q.; Wang, Z.; Xia, J. S.; Chen, Y.; Zhao, Z. G.; Li, Q. W.; Geng, F. X. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 2017, 11, 7879–7888.

    Article  Google Scholar 

  56. [56]

    Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 2017, 27, 1704353.

    Article  Google Scholar 

  57. [57]

    Lim, Y.; Yoon, J.; Yun, J.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2014, 8, 11639–11650.

    Article  Google Scholar 

  58. [58]

    Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

    Article  Google Scholar 

  59. [59]

    Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem., Int. Ed. 2012, 51, 4934–4938.

    Article  Google Scholar 

  60. [60]

    Li, S. H.; Huang, D. K.; Zhang, B. Y.; Xu, X. B.; Wang, M. K.; Yang, G.; Shen, Y. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 2014, 4, 1301655.

    Article  Google Scholar 

  61. [61]

    Nyström, G.; Marais, A.; Karabulut, E.; Wågberg, L.; Cui Y.; Hamedi, M. M. Self-assembled three-dimensional and compressible interdigitated thinfilm supercapacitors and batteries. Nat. Commun. 2015, 6, 7259.

    Article  Google Scholar 

  62. [62]

    Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

    Article  Google Scholar 

  63. [63]

    Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

    Article  Google Scholar 

  64. [64]

    Xiao, K.; Ding, L. X.; Liu, G. X.; Chen, H. B.; Wang S. Q.; Wang, H. H. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 2016, 28, 5997–6002.

    Article  Google Scholar 

  65. [65]

    Liang, X.; Nie, K. W.; Ding, X.; Dang, L. Q.; Sun, J.; Shi, F.; Xu, H.; Jiang, R. B.; He, X. X.; Liu, Z. H. et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 10087–10095.

    Article  Google Scholar 

  66. [66]

    Sheng, L. Z.; Chang, J.; Jiang, L. L.; Jiang, Z. M.; Liu, Z.; Wei, T.; Fan, Z. J. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597.

    Article  Google Scholar 

Download references


We acknowledge the financial support from the National Key R&D Program of China (Nos. 2017YFB1104300 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51673026, 51433005, and 21774015), NSFC-MAECI (No. 51861135202), Beijing Municipal Science and Technology Commission (Nos. Z161100002116022 and Z161100002116029).

Author information



Corresponding authors

Correspondence to Zhipan Zhang or Liangti Qu.

Electronic supplementary material

Supplementary material, approximately 4.64 MB.

Supplementary material, approximately 5.59 MB.

Supplementary material, approximately 6.92 MB.

Supplementary material, approximately 3.86 MB.

Supplementary material, approximately 6.66 MB.

A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Sun, G., Zhang, G. et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 12, 1199–1206 (2019). https://doi.org/10.1007/s12274-019-2382-z

Download citation


  • ionic conductivity
  • compressibility
  • wide temperature tolerance
  • supercapacitors
  • polyacrylamide electrolyte