Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications

Abstract

In this work, we discovered an unexpected mechanoluminescence (ML) phenomena occurring when transforming amorphous into crystalline, due to the stress-induced precipitation of CsPbBr3 perovskite nanocrystals on glass surface. It is revealed that, unlike the conventional thermal-induced phase transformation mechanism, the breakage of bonding of glass network provides the energy for nucleation and growth, and the shear stress avoids the long-range migration of structural units for crystallization. Such unique ML phenomenon enables the visualization of dynamical force that is inaccessible by common strategy, and so, opens up some novel applications, such as the pressuresensitive “glassy pencil” to learn people’s writing habits, and the Pb2+-detection with good sensitivity and selectivity. These findings not only demonstrate an effective route for the preparation of perovskite materials in a green, time-saving, low cost, and scalable way, enrich the knowledge of glass crystallization mechanism, but also exploit a useful avenue to quantitatively visualize the dynamical force.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Karpukhina, N.; Hill, R. G.; Law, R. V. Crystallisation in oxide glasses-a tutorial review. Chem. Soc. Rev. 2014, 43, 2174–2186.

    Article  Google Scholar 

  2. [2]

    Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175.

    Article  Google Scholar 

  3. [3]

    Fedorov, P. P.; Luginina, A. A.; Popov, A. I. Transparent oxyfluoride glass ceramics. J. Fluorine Chem. 2015, 172, 22–50.

    Article  Google Scholar 

  4. [4]

    Fokin, V. M.; Zanotto, E. D.; Yuritsyn, N. S.; Schmelzer, J. W. P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 2006, 352, 2681–2714.

    Article  Google Scholar 

  5. [5]

    Liu, X. F.; Zhou, J. J.; Zhou, S. F.; Yue, Y. Z.; Qiu, J. R. Transparent glassceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96.

    Article  Google Scholar 

  6. [6]

    Zhang, R.; Lin, H.; Yu, Y. L.; Chen, D. Q.; Xu, J.; Wang, Y. S. A newgeneration color converter for high-power white LED: Transparent Ce3+: YAG phosphor-in-glass. Laser Photonics Rev. 2014, 8, 158–164.

    Article  Google Scholar 

  7. [7]

    Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.

    Article  Google Scholar 

  8. [8]

    Zhou, S. F.; Zheng, B. B.; Shimotsuma, Y.; Lu, Y. H.; Guo, Q. B.; Nishi, M.; Shimizu, M.; Miura, K.; Hirao, K.; Qiu, J. R. Heterogeneous-surfacemediated crystallization control. NPG Asia Mater. 2016, 8, e245.

    Article  Google Scholar 

  9. [9]

    Xu, X. H.; Zhang, W. F.; Yang, D. C.; Lu, W.; Qiu, J. B.; Yu, S. F. Phononassisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics. Adv. Mater. 2016, 28, 8045–8050.

    Article  Google Scholar 

  10. [10]

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.; Rodríguez, V. D. Novel sol-gel nano-glass-ceramics comprising Ln3+- doped YF3 nanocrystals: Structure and high efficient UV up-conversion. Adv. Funct. Mater. 2011, 21, 3136–3142.

    Article  Google Scholar 

  11. [11]

    Calvez, L.; Ma, H. L.; Lucas, J.; Zhang, X. H. Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR. Adv. Mater. 2007, 19, 129–132.

    Article  Google Scholar 

  12. [12]

    Zhou, S. F.; Jiang, N.; Miura, K.; Tanabe, S.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Nishi, M.; Qiu, J. R.; Hirao, K. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. J. Am. Chem. Soc. 2010, 132, 17945–17952.

    Article  Google Scholar 

  13. [13]

    Rosenflanz, A.; Frey, M.; Endres, B.; Anderson, T.; Richards, E.; Schardt, C. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 2004, 430, 761–764.

    Article  Google Scholar 

  14. [14]

    Lin, H.; Hu, T.; Cheng, Y.; Chen, M. X.; Wang, Y. S. Glass ceramic phosphors: Towards long-lifetime high-power white light-emitting-diode applications-a review. Laser Photonics Rev. 2018, 12, 1700344.

    Article  Google Scholar 

  15. [15]

    Xiao, Z. H.; Sun, X. Y.; Li, X. Y.; Wang, Y. Q.; Wang, Z. Q.; Zhang, B. W.; Li, X. L.; Shen, Z. X.; Kong, L. B.; Huang, Y. Z. Phase transformation of GeO2 glass to nanocrystals under ambient condition. Nano Lett. 2018, 18, 3290–3296.

    Article  Google Scholar 

  16. [16]

    Sagara, Y., Mutai, T., Yoshikawa, I.; Araki, K. Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 2007, 129, 1520–1521.

    Article  Google Scholar 

  17. [17]

    Sagara, Y.; Kato, T. Stimuli-responsive luminescent liquid crystals: Change of photoluminescent colors triggered by a shear-Induced phase transition. Angew. Chem., Int. Ed. 2008, 47, 5175–5178.

    Article  Google Scholar 

  18. [18]

    Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T. Mechanical stimulation and solid seeding trigger single-crystal-to-singlecrystal molecular domino transformations. Nat. Commun. 2013, 4, 2009.

    Article  Google Scholar 

  19. [19]

    Nagura, K.; Saito, S.; Yusa, H.; Yamawaki, H.; Fujihisa, H.; Sato, H.; Shimoikeda, Y.; Yamaguchi, S. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 2013, 135, 10322–10325.

    Article  Google Scholar 

  20. [20]

    Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.

    Article  Google Scholar 

  21. [21]

    Lee, C. K.; Davis, D. A.; White, S. R.; Moore, J. S.; Sottos, N. R.; Braun, P. V. Force-induced redistribution of a chemical equilibrium. J. Am. Chem. Soc. 2010, 132, 16107–16111.

    Article  Google Scholar 

  22. [22]

    Jeong, S. M.; Song, S.; Joo, K. I.; Kim, J.; Hwang, S. H.; Jeong, J.; Kim, H. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 2014, 7, 3338–3346.

    Article  Google Scholar 

  23. [23]

    Chandra, V. K.; Chandra, B. P.; Jha, P. Strong luminescence induced by elastic deformation of piezoelectric crystals. Appl. Phys. Lett. 2013, 102, 241105.

    Article  Google Scholar 

  24. [24]

    Timilsina, S.; Lee, K. H.; Jang, I. Y.; Kim, J. S. Mechanoluminescent determination of the mode I stress intensity factor in SrAl2O4:Eu2+, Dy3+. Acta Mater. 2013, 61, 7197–7206.

    Article  Google Scholar 

  25. [25]

    Peng, D. F.; Chen, B.; Wan, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.

    Article  Google Scholar 

  26. [26]

    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416.

    Article  Google Scholar 

  27. [27]

    Xie, Y. J.; Li, Z. Triboluminescence: Recalling interest and new aspects. Chem 2018, 4, 943–971.

    Article  Google Scholar 

  28. [28]

    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  29. [29]

    Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    Article  Google Scholar 

  30. [30]

    Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

    Article  Google Scholar 

  31. [31]

    He, X. H.; Qiu, Y. C.; Yang S. H. Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials. Adv. Mater. 2017, 29, 1700775.

    Article  Google Scholar 

  32. [32]

    Quan, L. N.; de Arquer, F. P. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.

    Article  Google Scholar 

  33. [33]

    Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

    Article  Google Scholar 

  34. [34]

    Ai, B.; Liu, C.; Wang, J.; Xie, J.; Han, J. J.; Zhao, X. J. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 2016, 99, 2875–2877.

    Article  Google Scholar 

  35. [35]

    Ravi-Chandar, K.; Knauss, W. G. An experimental investigation into dynamic fracture: II. Microstructural aspects. Int. J. Fracture 1984, 26, 65–80.

    Article  Google Scholar 

  36. [36]

    Milman, V. Y.; Stelmashenko, N. A.; Blumenfeld, R. Fracture surfaces: A critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements. Prog. Mater. Sci. 1994, 38, 425–474.

    Article  Google Scholar 

  37. [37]

    Mecholsky, J. J.; Gonzalez, A. C.; Freiman, S. W. Fractographic analysis of delayed failure in soda-lime glass. J. Am. Ceram. Soc. 1979, 62, 577–580.

    Article  Google Scholar 

  38. [38]

    Freiman S. The fracture of glass: Past, present, and future. Int. J. Appl. Glass Sci. 2012, 3, 89–106.

    Google Scholar 

  39. [39]

    Mecholsky, J. J., Jr.; Freiman, S. W. Relationship between fractal geometry and fractography. J. Am. Ceram. Soc. 1991, 74, 3136–3138.

    Article  Google Scholar 

  40. [40]

    Cha, J. H.; Han, J. H.; Yin, W. P.; Park, C.; Park, Y.; Ahn, T. K.; Cho, J. H.; Jung, D. Y. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 2017, 8, 565–570.

    Article  Google Scholar 

  41. [41]

    Hayashi, A.; Konishi, T.; Tadanaga, K.; Minami, T.; Tatsumisago, M. Preparation and characterization of SnO-P2O5 glasses as anode materials for lithium secondary batteries. J. Non-Cryst. Solids 2004, 345–346, 478–483.

    Article  Google Scholar 

  42. [42]

    Zhao, J. J.; Ma, R. H.; Chen, X. K.; Kang, B. B.; Qiao, X. S.; Du, J. C.; Fan, X. P.; Ross, U.; Roiland, C.; Lotnyk, A. et al. From phase separation to nanocrystallization in fluorosilicate glasses: Structural design of highly luminescent glass-ceramics. J. Phys. Chem. C 2016, 120, 17726–17732.

    Article  Google Scholar 

  43. [43]

    Lin, C. G.; Bocker, C.; Rüssel, C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation. Nano Lett. 2015, 15, 6764–6769.

    Article  Google Scholar 

  44. [44]

    Bhattacharyya, S.; Bocker, C.; Heil, T.; Jinschek, J. R.; Höche, T.; Rüssel, C.; Kohl, H. Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett. 2009, 9, 2493–2496.

    Article  Google Scholar 

  45. [45]

    Herrmann, A.; Tylkowski, M.; Bocker, C.; Rüssel, C. Cubic and hexagonal NaGdF4 crystals precipitated from an aluminosilicate glass: Preparation and luminescence properties. Chem. Mater. 2013, 25, 2878–2884.

    Article  Google Scholar 

  46. [46]

    Jiang, Z. H.; Zhang, Q. Y. The structure of glass: A phase equilibrium diagram approach. Prog. Mater. Sci. 2014, 61, 144–215.

    Article  Google Scholar 

  47. [47]

    Bocker, C.; Rüssel, C.; Avramov, I. Transparent nano crystalline glass-ceramics by interface controlled crystallization. Int. J. Appl. Glass Sci. 2013, 4, 174–181.

    Article  Google Scholar 

  48. [48]

    de Pablos-Martín, A.; Mather, G. C.; Muñoz, F.; Bhattacharyya, S.; Höche, T.; Jinschek, J. R.; Heil, T.; Durán, A.; Pascual, M. J. Design of oxy-fluoride glassceramics containing NaLaF4 nano-crystals. J. Non-Cryst. Solids 2010, 356, 3071–3079.

    Article  Google Scholar 

  49. [49]

    Li, T.; Dong, S. J.; Wang, E. K. A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. J. Am. Chem. Soc. 2010, 132, 13156–13157.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11674318, 11774346, 51872288, and 51472242), the National Key R&D Program of China (No. 2016YFB0701003) and the Chunmiao Project of the Haixi Institute of the Chinese Academy of Sciences (No. CMZX-2017-002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hang Lin or Yuansheng Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Lin, H., Li, R. et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Res. 12, 1049–1054 (2019). https://doi.org/10.1007/s12274-019-2338-3

Download citation

Keywords

  • perovskite nanocrystals
  • CsPbBr3
  • mechanoluminescence
  • glass ceramics
  • nanocrystallization