Skip to main content
Log in

Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) is the most efficient method to grow large-area two dimensional (2D) transition metal dichiacogenides (TMDCs) in high quality. Monolayer molybdenum disulfide (MoS2) and seed-assistant are the mostly selected 2D TMDC and growth strategy for such CVD processes, respectively. Though the advantages of seed catalysts in facilitating the nucleation, achieving higher yield and better repeatability, as well as their effects on the morphologies of as-grown MoS2 have been studied, the influence of seeding promoters on both optical and electrical properties of as-grown monolayer MoS2 is not known comprehensively, which is indeed critical for understanding fundamental physics and developing practical application of such emerging 2D semiconductors. In this report, we systematically investigated the effect of different seeding promoters on the properties of CVD-grown monolayer MoS2. It is found that different seed molecules lead to different impacts on the optical and electrical properties of as-grown monolayer MoS2. Among three different seed catalysts (perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS), copper phthalocyanine (CuPc), and crystal violet (CV)), PTAS performs better in obtaining large area monolayer MoS2 with good optical quality and high electrical mobility than the other two. Our work gives a guide for modifying the properties of as-grown monolayer MoS2 and other 2D transition metal dichalcogenides in seeding promoters-assisted synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2014, 306, 666–669.

    Article  Google Scholar 

  2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  3. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  4. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  Google Scholar 

  5. Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

    Article  Google Scholar 

  6. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    Article  Google Scholar 

  7. Shang, J. Z.; Cong, C. X.; Wang, Z. L; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C.; Huang, W.; Yu, T. Roomtemperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.

    Article  Google Scholar 

  8. Xu, W. G.; Liu, W. W.; Schmidt, J. F.; Zhao, W. J.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W. B.; Seletskiy, D. V.; Xiong, Q. H. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2016, 541, 62–67.

    Article  Google Scholar 

  9. Shang, J. Z.; Cong, C. X.; Wu, L. S.; Huang, W.; Yu, T. Light sources and photodetectors enabled by 2D semiconductors. Small Methods 2018, 2, 1800019.

    Article  Google Scholar 

  10. Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nanotoday 2015, 10, 128–137.

    Article  Google Scholar 

  11. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    Article  Google Scholar 

  12. Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

    Article  Google Scholar 

  13. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Straininduced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    Article  Google Scholar 

  14. Cong, C. X.; Zou, C. J.; Cao, B. C.; Wu, L. S.; Shang, J. Z.; Wang, H. M.; Qiu, Z. J.; Hu, L. G.; Tian, P. F.; Liu, R. et al. Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride. Nano Res. 2018, 11, 6227–6236.

    Article  Google Scholar 

  15. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  16. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  17. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  18. Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  Google Scholar 

  19. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  Google Scholar 

  20. Lee, J.; Pak, S.; Giraud, P.; Lee, Y. W.; Cho, Y.; Hong, J.; Jang, A. R.; Chung, H. S.; Hong, W. K.; Jeong, H. Y. et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices. Adv. Mater. 2017, 29, 1702206.

    Article  Google Scholar 

  21. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  Google Scholar 

  22. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  Google Scholar 

  23. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  24. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  Google Scholar 

  25. Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472.

    Article  Google Scholar 

  26. Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

    Article  Google Scholar 

  27. Kim, I. S.; Sangwan, V. K.; Jariwala, D.; Wood, J. D.; Park, S.; Chen, K. S.; Shi, F. Y.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014, 8, 10551–10558.

    Article  Google Scholar 

  28. Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y. M.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.

    Article  Google Scholar 

  29. Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H.; Zhang, S. P.; Yuan, S. L. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.

    Article  Google Scholar 

  30. Li, Y. Z.; Li, X. S.; Chen, H. Y.; Shi, J.; Shang, Q. Y.; Zhang, S.; Qiu, X. H.; Liu, Z.; Zhang, Q.; Xu, H. Y. et al. Controlled gas molecules doping of monolayer MoS2 via atomic-layer-deposited Al2O3 films. ACS Appl. Mater. Interfaces 2017, 9, 27402–27408.

    Article  Google Scholar 

  31. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound Trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  Google Scholar 

  32. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    Article  Google Scholar 

  33. Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.

    Article  Google Scholar 

  34. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2016, 6, 5635–5641.

    Article  Google Scholar 

  35. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  Google Scholar 

  36. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Singlelayer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  37. Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954–959.

    Article  Google Scholar 

  38. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Article  Google Scholar 

  39. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61774040, 61774042, and 51772317), the National Young 1000 Talent Plan of China, the Shanghai Municipal Natural Science Foundation (Nos. 16ZR1402500, 16ZR1442700, and 17ZR1446500), the Opening project of State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, the National Key R&D program (No. 2017YFF0206106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Ping Qu, Zhi-Jun Qiu or Chunxiao Cong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Yang, AG., Chen, L. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 12, 823–827 (2019). https://doi.org/10.1007/s12274-019-2294-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2294-y

Keywords

Navigation