Skip to main content
Log in

Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphene nanosheets is through molecular junctions, allowing covalently connecting nanosheets, otherwise interacting only via weak Van der Waals forces. Beside the bare existence of covalent connections, the choice of molecular structures to be used as thermal junctions should be guided by their vibrational properties, in terms of phonon transfer through the molecular junction. In this paper, density functional tight-binding combined with Green’s functions formalism was applied for the calculation of thermal conductance and phonon spectra of several different aliphatic and aromatic molecular junctions between graphene nanosheets. Effects of molecular junction length, conformation, and aromaticity were studied in detail and correlated with phonon tunnelling spectra. The theoretical insight provided by this work can guide future experimental studies to select suitable molecular junctions, in order to enhance the thermal transport by suppressing the interfacial thermal resistances. This is attractive for various systems, including graphene nanopapers and graphene polymer nanocomposites, as well as related devices. In a broader view, the possibility to design molecular junctions to control phonon transport currently appears as an efficient way to produce phononic devices and controlling heat management in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.

    Article  Google Scholar 

  2. Estrada, D.; Pop. E. Imaging dissipation and hot spots in carbon nanotube network transistors. Appl. Phys. Lett. 2011, 98, 073102.

    Article  Google Scholar 

  3. Welsh, J. P. Design Manual of Natural Methods of Cooling Electronic Equipment, Report No. HF-845-D-8; Dept. of the Navy, Bureau of Ships: Washington, 1962.

    Google Scholar 

  4. Ellison, G. N. Thermal Computations for Electronic Equipment; Van Nostrand Reinhold Co: New York, 1984.

    Google Scholar 

  5. Seebeck, T. J. Magnetische polarisation der metalle und erze durch temperatur-differenz. Royal Academy of Sciences in Berlin, Berlin, 1825.

    Google Scholar 

  6. Seebeck, T. J. Ueber die magnetische polarisation der metalle und erze durch temperaturdifferenz. Ann. Phys. 1826, 82, 253–286.

    Article  Google Scholar 

  7. Zhou, Y.; Paul, S.; Bhunia, S. Harvesting wasted heat in a microprocessor using thermoelectric generators: Modeling, analysis and measurement. In Proceedings of 2008 Design, Automation and Test in Europe, Munich, Germany, 2008, pp 98–103.

    Chapter  Google Scholar 

  8. Han, H. X.; Zhang, Y.; Wang, N.; Samani, M. K.; Ni, Y. X.; Mijbil, Z. Y.; Edwards, M.; Xiong, S. Y.; Sääskilahti, K.; Murugesan, M. et al. Functionalization mediates heat transport in graphene nanoflakes. Nat. Commun. 2016, 7, 11281.

    Article  Google Scholar 

  9. Martínez-Gutiérrez, D.; Velasco, V. R. Acoustic breathing mode frequencies in cylinders, cylindrical shells and composite cylinders of general anisotropic crystals: Application to nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 54, 86–92.

    Article  Google Scholar 

  10. Martínez-Gutiérrez, D.; Velasco, V. R. Acoustic waves of GaN nitride nanowires. Surf. Sci. 2011, 605, 24–31.

    Article  Google Scholar 

  11. Lü, J. T.; Wang, J. S. Quantum phonon transport of molecular junctions amide-linked with carbon nanotubes: A first-principles study. Phys. Rev. B 2008, 78, 235436.

    Article  Google Scholar 

  12. Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çagin, T. Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 2011, 11, 4971–4977.

    Article  Google Scholar 

  13. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  Google Scholar 

  14. Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer grapheme. Nat. Mater. 2010, 9, 555–558.

    Article  Google Scholar 

  15. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  16. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of grapheme. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  17. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  18. Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 2008, 100, 117401.

    Article  Google Scholar 

  19. Li, Z. L.; Chen, L. L.; Meng, S.; Guo, L. W.; Huang, J.; Liu, Y.; Wang, W. J.; Chen, X. L. Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Phys. Rev. B 2015, 91, 094429.

    Article  Google Scholar 

  20. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  Google Scholar 

  21. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

    Article  Google Scholar 

  22. Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal conductivity of singlewalled carbon nanotubes. Phys. Rev. B 1999, 59, R2514–R2516.

    Article  Google Scholar 

  23. Khan, A. I.; Navid, I. A.; Noshin, M.; Uddin, H. M. A.; Hossain, F. F.; Subrina, S. Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials. Electronics 2015, 4, 1109–1124.

    Article  Google Scholar 

  24. Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Oligoyne molecular junctions for efficient room temperature thermoelectric power generation. Nano Lett. 2015, 15, 7467–7472.

    Article  Google Scholar 

  25. Faist, J.; Capasso, F.; Sirtori, C.; West, K. W.; Pfeiffer, L. N. Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 1997, 390, 589–591.

    Article  Google Scholar 

  26. Klöckner, J. C.; Cuevas, J. C.; Pauly, F. Tuning the thermal conductance of molecular junctions with interference effects. Phys. Rev. B 2017, 96, 245419.

    Article  Google Scholar 

  27. Famili, M.; Grace, I.; Sadeghi, H.; Lambert, C. J. Suppression of phonon transport in molecular Christmas trees. Chemphyschem 2017, 18, 1234–1241.

    Article  Google Scholar 

  28. Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.

    Article  Google Scholar 

  29. Klöckner, J. C.; Siebler, R.; Cuevas, J. C.; Pauly, F. Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons. Phys. Rev. B 2017, 95, 245404.

    Article  Google Scholar 

  30. Markussen, T.; Palsgaard, M.; Stradi, D.; Gunst, T.; Brandbyge, M.; Stokbro, K. Electron-phonon scattering from Green’s function transport combined with molecular dynamics: Applications to mobility predictions. Phys. Rev. B 2017, 95, 245210.

    Article  Google Scholar 

  31. Klöckner, J. C.; Bürkle, M.; Cuevas, J. C.; Pauly, F. Length dependence of the thermal conductance of alkane-based single-molecule junctions: An ab initio study. Phys. Rev. B 2016, 94, 205425.

    Article  Google Scholar 

  32. Arroyo, C. R.; Tarkuc, S.; Frisenda, R.; Seldenthuis, J. S.; Woerde, C. H. M.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. 2013, 125, 3234–3237.

    Article  Google Scholar 

  33. Aradhya, S. V.; Meisner, J. S.; Krikorian, M.; Ahn, S.; Parameswaran, R.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 2012, 12, 1643–1647.

    Article  Google Scholar 

  34. Guédon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; van der Molen, S. J. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 2012, 7, 305–309.

    Article  Google Scholar 

  35. Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of p-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.

    Article  Google Scholar 

  36. Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga–In (EGaIn) top-contacts. J. Am. Chem. Soc. 2011, 133, 9556–9563.

    Article  Google Scholar 

  37. Taylor, J. Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

    Article  Google Scholar 

  38. Taraschi, G.; Mozos, J. L.; Wan, C. C.; Guo, H.; Wang, J. Structural and transport properties of aluminum atomic wires. Phys. Rev. B 1998, 58, 13138–13145.

    Article  Google Scholar 

  39. Wan, C. C.; Mozos, J. L.; Wang, J.; Guo, H. Dynamic admittance of atomic wires. Phys. Rev. B 1997, 55, R13393–R13396.

    Article  Google Scholar 

  40. Markussen, T. Phonon interference effects in molecular junctions. J. Chem. Phys. 2013, 139, 244101.

    Article  Google Scholar 

  41. Sasikumar, K.; Keblinski, P. Effect of chain conformation in the phonon transport across a Si-polyethylene single-molecule covalent junction. J. Appl. Phys. 2011, 109, 114307.

    Article  Google Scholar 

  42. Ranganathan, R.; Sasikumar, K.; Keblinski, P. Realizing tunable molecular thermal devices based on photoisomerism—Is it possible? J. Appl. Phys. 2015, 117, 025305.

    Article  Google Scholar 

  43. Li, Q.; Duchemin, I.; Xiong, S. Y.; Solomon, G. C.; Donadio, D. Mechanical tuning of thermal transport in a molecular junction. J. Phys. Chem. C 2015, 119, 24636–24642.

    Article  Google Scholar 

  44. Li, Q.; Strange, M.; Duchemin, I.; Donadio, D.; Solomon, G. C. A strategy to suppress phonon transport in molecular junctions using p-stacked systems. J. Phys. Chem. C 2017, 121, 7175–7182.

    Article  Google Scholar 

  45. Koskinen, P.; Mäkinen, V. Density-functional tight-binding for beginners. Comput. Mater. Sci. 2009, 47, 237–253.

    Article  Google Scholar 

  46. Aradi, B.; Hourahine, B.; Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 2007, 111, 5678–5684.

    Article  Google Scholar 

  47. DFTB+. www.dftb-plus.info (accessed Dec 19, 2018).

  48. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.

    Article  Google Scholar 

  49. Zhang, W.; Fisher, T. S.; Mingo, N. The atomistic green’s function method: An efficient simulation approach for nanoscale phonon transport. Numer. Heat Transf. Part B Fundam. 2007, 51, 333–349.

    Article  Google Scholar 

  50. Sandonas, L. M.; Gutierrez, R.; Pecchia, A.; Seifert, G.; Cuniberti, G. Tuning quantum electron and phonon transport in two-dimensional materials by strain engineering: A Green’s function based study. Phys. Chem. Chem. Phys. 2017, 19, 1487–1495.

    Article  Google Scholar 

  51. Medrano Sandonas, L.; Teich, D.; Gutierrez, R.; Lorenz, T.; Pecchia, A.; Seifert, G.; Cuniberti, G. Anisotropic thermoelectric response in twodimensional puckered structures. J. Phys. Chem. C 2016, 120, 18841–18849.

    Article  Google Scholar 

  52. Medrano Sandonas, L.; Gutierrez, R.; Pecchia A.; Dianat, A.; Cuniberti, G. Thermoelectric properties of functionalized graphene grain boundaries. J. Self-Assembly Mol. Electron. 2015, 3, 1–20.

    Article  Google Scholar 

  53. Bernal, M. M.; di Pierro, A.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A. Edge-grafted molecular junctions between graphene nanoplatelets: Applied chemistry to enhance heat transfer in nanomaterials. Adv. Funct. Mater. 2018, 28, 1706954.

    Article  Google Scholar 

  54. di Pierro, A.; Saracco, G.; Fina, A. Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains. Comput. Mater. Sci. 2018, 142, 255–260.

    Article  Google Scholar 

  55. Foulkes, W. M. C.; Haydock, R. Tight-binding models and density-functional theory. Phys. Rev. B 1989, 39, 12520–12536.

    Article  Google Scholar 

  56. Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T.; Köhler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; di Carlo, A.; Suhai, S. Atomistic simulations of complex materials: Ground-state and excited-state properties. J. Phys. Condens. Matter. 2002, 14, 3015–3047.

    Article  Google Scholar 

  57. Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.

    Book  Google Scholar 

  58. Sadasivam, S.; Che, Y. H.; Huang, Z.; Chen, L.; Kumar, S.; Fisher, T. S. The atomistic green’s function method for interfacial phonon transport. Annu. Rev. Heat Transf. 2014, 17, 89–145.

    Article  Google Scholar 

  59. Segal, D.; Nitzan, A.; Hänggi, P. Thermal conductance through molecular wires. J. Chem. Phys. 2003, 119, 6840–6855.

    Article  Google Scholar 

  60. Ozpineci, A.; Ciraci, S. Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 2001, 63, 125415.

    Article  Google Scholar 

  61. Meier, T.; Menges, F.; Nirmalraj, P.; Hölscher, H.; Riel, H.; Gotsmann, B. Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 2014, 113, 060801.

    Article  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant agreement 639495 — INTHERM — ERC-2014-STG. L. M. S. thanks the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. B. M. greatly acknowledges the financial support by European Research Council for COMBAT project (Grant number 615132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Fina.

Electronic supplementary material

12274_2019_2290_MOESM1_ESM.pdf

Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Gutierrez, D., Di Pierro, A., Pecchia, A. et al. Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study. Nano Res. 12, 791–799 (2019). https://doi.org/10.1007/s12274-019-2290-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2290-2

Keywords

Navigation