Skip to main content
Log in

Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The inclusion of inorganic nanoparticles in biological environments has led to the creation of hybrid nanosystems that are employed in a variety of applications. One such system includes quantum dots (QDs) coupled with the photoactive protein, bacteriorhodopsin (BR), which has been explored in developing enhanced photovoltaic devices. In this work, we have discovered that the kinetics of the BR photocycle can be manipulated using CdSe/CdS (core/shell) QDs. The photocycle lifetime of protein samples with varying QD amounts were monitored using time-resolved absorption spectroscopy. Concentration-dependent elongations of the bR and M state lifetimes were observed in the kinetic traces, thus suggesting that excitonic coupling occurs between BR and QDs. We propose that the pairing of BR with QDs has the potential to be utilized in protein-based computing applications, specifically for real-time holographic processors, which depend on the temporal dynamics of the bR and M photointermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parpura, V. Bionanoelectronics: Getting close to the action. Nat. Nanotechnol. 2012, 7, 143–145.

    Article  CAS  Google Scholar 

  2. Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807–820.

    Article  CAS  Google Scholar 

  3. Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.

    Article  CAS  Google Scholar 

  4. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557.

    Article  CAS  Google Scholar 

  5. Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12–21.

    Article  CAS  Google Scholar 

  6. Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The gold standard: Gold nanoparticle libraries to understand the nano–bio interface. Acc. Chem. Res. 2013, 46, 650–661.

    Article  CAS  Google Scholar 

  7. Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New. Biol. 1971, 233, 149–152.

    Article  CAS  Google Scholar 

  8. Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 1999, 291, 899–911.

    Article  CAS  Google Scholar 

  9. Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899–929.

    Article  CAS  Google Scholar 

  10. Stuart, J. A.; Birge, R. R. Characterization of the primary photochemical events in bacteriorhodopsin and rhodopsin. In Biomembranes. Lee, A. G., Ed.; JAI Press: London, 1996; pp 33–139.

    Google Scholar 

  11. Lozier, R. H.; Niederberger, W.; Bogomolni, R. A.; Hwang, S.; Stoeckenius, W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim. Biophys. Acta 1976, 440, 545–556.

    Article  CAS  Google Scholar 

  12. Oesterhelt, D.; Hegemann, P.; Tittor, J. The photocycle of the chloride pump halorhodopsin. II. Quantum yields and a kinetic model. EMBO J. 1985, 4, 2351–2356.

    CAS  Google Scholar 

  13. Govindjee, R.; Balashov, S. P.; Ebrey, T. G. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 1990, 58, 597–608.

    Article  CAS  Google Scholar 

  14. Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66, 665–688.

    Article  CAS  Google Scholar 

  15. Hayashi, S.; Tajkhorshid, E.; Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys. J. 2002, 83, 1281–1297.

    Article  CAS  Google Scholar 

  16. Edman, K.; Nollert, P.; Royant, A.; Beirhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 1999, 401, 822–826.

    Article  CAS  Google Scholar 

  17. Schenkl, S.; van Mourik, F.; van der Zwan, G.; Haacke, S.; Chergui, M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 2005, 309, 917–920.

    Article  CAS  Google Scholar 

  18. Kobayashi, T.; Salto, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531–534.

    Article  CAS  Google Scholar 

  19. Herbst, J.; Heyne, K.; Diller, R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 2002, 297, 822–825.

    Article  CAS  Google Scholar 

  20. Atkinson, G. H.; Brach, T. L.; Blanchard, D.; Rumbles, G. Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomerization in the bacteriorhodopsin photocycle. Chem. Phys. 1989, 131, 1–15.

    Article  CAS  Google Scholar 

  21. Nogly, P.; Weinert, T.; James, D. Carbajo, S.; Ozerov, D.; Furrer, A.; Gashi, D.; Borin, V.; Skopintsev, P.; Jaeger, K. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science, in press, DOI: 10.1126/science.aat0094.

  22. Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C. Y.; Tanaka, R. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016, 354, 1552–1557.

    Article  CAS  Google Scholar 

  23. Balashov, S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim. Biophys. Acta 2000, 1460, 75–94.

    Article  CAS  Google Scholar 

  24. Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S. et al. Biomolecular electronics: Protein-based associative processors and volumetric memories. J. Phys. Chem. B 1999, 103, 10746–10766.

    Article  CAS  Google Scholar 

  25. He, J. A.; Samuelson, L.; Li, L.; Kumar, J.; Tripathy, S. K. Bacteriorhodopsin thin-film assemblies—Immobilization, properties, and applications. Adv. Mater. 1999, 11, 435–446.

    Article  CAS  Google Scholar 

  26. Stuart, J. A.; Marcy, D. L.; Birge, R. R. Photonic and optoelectronic applications of bacteriorhodopsin. In Bioelectronic Applications of Photochromic Pigments. Dér, A.; Keszthelyi, L., Eds.; IOS Press: Szeged, Hungary, 2000; pp 16–29.

    Google Scholar 

  27. Tallent, J.; Song, Q. W.; Li, Z. F.; Stuart, J.; Birge, R. R. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films. Opt. Lett. 1996, 21, 1339–1341.

    Article  CAS  Google Scholar 

  28. Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 2000, 100, 1755–1776.

    Article  CAS  Google Scholar 

  29. Cutsuridis, V.; Wennekers, T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009, 22, 1120–1128.

    Article  Google Scholar 

  30. Reijmers, L. G.; Perkins, B. L.; Matsuo, N.; Mayford, M. Localization of a stable neural correlate of associative memory. Science 2007, 317, 1230–1233.

    Article  CAS  Google Scholar 

  31. Hampp, N.; Thoma, R.; Zeisel, D.; Brüchle, C.; Oesterhelt, D. Bacteriorhodopsin variants for holographic pattern recognition. Adv. Chem. 1994, 240, 511–526.

    Article  CAS  Google Scholar 

  32. Paek, E. G.; Jung, E. C. Simplified holographic associative memory using enhanced nonlinear processing with a thermoplastic plate. Opt. Lett. 1991, 16, 1034–1036.

    Article  CAS  Google Scholar 

  33. Paek, E. G.; Psaltis, D. Optical associative memory using Fourier transform holograms. Opt. Eng. 1987, 26, 265428.

    Article  Google Scholar 

  34. Abu-Mostafa, Y. S.; Psaltis, D. Optical neural computers. Sci. Am. 1987, 256, 88–95.

    Article  Google Scholar 

  35. Popp, A.; Wolperdinger, M.; Hampp, N.; Bräuchle, C.; Oesterhelt, D. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Biophys. J. 1993, 65, 1449–1459.

    Article  CAS  Google Scholar 

  36. Gillespie, N. B.; Wise, K. J.; Ren, L.; Stuart, J. A.; Marcy, D. L.; Hillebrecht, J.; Li, Q.; Ramos, L.; Jordan, K.; Fyvie, S. et al. Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin. J. Phys. Chem. B 2002, 106, 13352–13361.

    Article  CAS  Google Scholar 

  37. Ranaghan, M. J.; Greco, J. A.; Wagner, N. L.; Grewal, R.; Rangarajan, R.; Koscielecki, J. F.; Wise, K. J.; Birge, R. R. Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism. ACS Appl. Mater. Interfaces 2014, 6, 2799–2808.

    Article  CAS  Google Scholar 

  38. Wagner, N. L.; Greco, J. A.; Ranaghan, M. J.; Birge, R. R. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J. R. Soc. Interface 2013, 10, 20130197.

    Article  CAS  Google Scholar 

  39. Hillebrecht, J. R.; Wise, K. J.; Koscielecki, J. F.; Birge, R. R. Directed evolution of bacteriorhodopsin for device applications. Methods Enzymol. 2004, 388, 333–347.

    Article  CAS  Google Scholar 

  40. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

    Article  CAS  Google Scholar 

  41. Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005, 7, 55–76.

    Article  CAS  Google Scholar 

  42. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  43. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

    Article  CAS  Google Scholar 

  44. Griep, M. H.; Winder, E. M.; Lueking, D. R.; Garrett, G. A.; Karna, S. P.; Friedrich, C. R. Förster resonance energy transfer between core/shell quantum dots and bacteriorhodopsin. Mol. Biol. Int. 2012, 2012, 910707.

    Article  CAS  Google Scholar 

  45. Rakovich, A.; Nabiev, I.; Sukhanova, A.; Lesnyak, V.; Gaponik, N.; Rakovich, Y. P.; Donegan, J. F. Large enhancement of nonlinear optical response in a hybrid nanobiomaterial consisting of bacteriorhodopsin and cadmium telluride quantum dots. ACS Nano 2013, 7, 2154–2160.

    Article  CAS  Google Scholar 

  46. Rakovich, A.; Sukhanova, A.; Bouchonville, N.; Lukashev, E.; Oleinikov, V.; Artemyev, M.; Lesnyak, V.; Gaponik, N.; Molinari, M.; Troyon, M. et al. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Lett. 2010, 10, 2640–2648.

    Article  CAS  Google Scholar 

  47. Bouchonville, N.; Molinari, M.; Sukhanova, A.; Artemyev, M.; Oleinikov, V. A.; Troyon, M.; Nabiev, I. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transferbased nanophotonic applications. Appl. Phys. Lett. 2011, 98, 013703.

    Article  CAS  Google Scholar 

  48. Griep, M. H.; Walczak, K. A.; Winder, E. M.; Lueking, D. R.; Friedrich, C. R. Quantum dot enhancement of bacteriorhodopsin-based electrodes. Biosens. Bioelectron. 2010, 25, 1493–1497.

    Article  CAS  Google Scholar 

  49. Roy, P.; Kantor-Uriel, N.; Mishra, D.; Dutta, S.; Friedman, N.; Sheves, M.; Naaman, R. Spin-controlled photoluminescence in hybrid nanoparticles purple membrane system. ACS Nano 2016, 10, 4525–4531.

    Article  CAS  Google Scholar 

  50. Peck, R. F.; DasSarma, S.; Krebs, M. P. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 2000, 35, 667–676.

    Article  CAS  Google Scholar 

  51. Becher, B. M.; Cassim, J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep. Biochem. 1975, 5, 161–178.

    CAS  Google Scholar 

  52. Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.

    Article  CAS  Google Scholar 

  53. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

    Article  CAS  Google Scholar 

  54. Greenhalgh, D. A.; Altenbach, C.; Hubbell, W. L.; Khorana, H. G. Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries. Proc. Natl. Acad. Sci. USA 1991, 88, 8626–8630.

    Article  CAS  Google Scholar 

  55. Krebs, M. P.; Behrens, W.; Mollaaghababa, R.; Khorana, H. G.; Heyn, M. P. X-ray diffraction of a cystein-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein. Biochemistry 1993, 32, 12830–12834.

    CAS  Google Scholar 

  56. Mollaaghababa, R.; Steinhoff, H.-J.; Hubbell, W. L.; Khorana, H. G. Timeresolved site-directed spin-labeling studies of bacteriorhodopsin. Loop-specific conformational changes in M. Biochemistry 2000, 39, 1120–1127.

    CAS  Google Scholar 

  57. Brizzolara, R. A.; Boyd, J. L.; Tate, A. E. Evidence for covalent attachment of purple membrane to a gold surface via genetic modification of bacteriorhodopsin. J. Vac. Sci. Technol. 1997, 15, 773–778.

    Article  CAS  Google Scholar 

  58. Schranz, M.; Noll, F.; Hampp, N. Oriented purple membrane monolayers covalently attached to gold by multiple thiole linkages analyzed by single molecule force spectroscopy. Langmuir 2007, 23, 11134–11138.

    Article  CAS  Google Scholar 

  59. Patil, A. V.; Premaruban, T.; Berthoumieu, O.; Watts, A.; Davis, J. J. Enhanced photocurrent in engineered bacteriorhodopsin monolayer films. J. Phys. Chem. B 2012, 116, 683–689.

    Article  CAS  Google Scholar 

  60. Eliash, T.; Weiner, L.; Ottolenghi, M.; Sheves, M. Specific binding sites for cations in bacteriorhodopsin. Biophys. J. 2001, 81, 1155–1162.

    Article  CAS  Google Scholar 

  61. Renugopalakrishnan, V.; Barbiellini, B.; King, C.; Molinari, M.; Mochalov, K.; Sukhanova, A.; Nabiev, I.; Fojan, P.; Tuller, H. L.; Chin, M. et al. Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J. Phys. Chem. C 2014, 118, 16710–16717.

    Article  CAS  Google Scholar 

  62. Li, R.; Li, C. M.; Bao, H. F.; Bao, Q. Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Appl. Phys. Lett. 2007, 91, 223901.

    Article  CAS  Google Scholar 

  63. Yen, C.-W.; Chu, L.-K.; El-Sayed, M. A. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J. Am. Chem. Soc. 2010, 132, 7250–7251.

    Article  CAS  Google Scholar 

  64. Uruga, T.; Hamanaka, T.; Kito, Y.; Uchida, I.; Nishimura, S.; Mashimo, T. Effects of volatile anesthetics on bacteriorhodopsin in purple membrane, Halobacterium halobium cells and reconstituted vesicles. Biophys. Chem. 1991, 41, 157–168.

    Article  CAS  Google Scholar 

  65. Pandey, P. C.; Upadhyay, B. C.; Pandey, C. M. D.; Pathak, H. C. Dependence of M, N and O states decay kinetics of D96N bacteriorhodopsin on amine and amino compounds and its application in chemical sensing. Sens. Actuators B 1998, 46, 80–86.

    Article  CAS  Google Scholar 

  66. Avi-Dor, Y.; Rott, R.; Schnaiderman, R. The effect of antibiotics on the photocycle and protoncycle of purple membrane suspensions. Biochim. Biophys. Acta 1979, 545, 15–23.

    Article  CAS  Google Scholar 

  67. Chizhov, I.; Engelhard, M.; Chernavskii, D. S.; Zubov, B.; Hess, B. Temperature and pH sensitivity of the O640 intermediate of the bacteriorhodopsin photocycle. Biophys. J. 1992, 61, 1001–1006.

    Article  CAS  Google Scholar 

  68. Váró, G; Lanyi, J. K. Protonation and deprotonation of the M, N, and O intermediates during the bacteriorhodopsin photocycle. Biochemistry 1990, 29, 6858–6865.

    Article  Google Scholar 

  69. Kono, M.; Misra, S.; Ebrey, T. G. pH dependence of light-induced proton release by bacteriorhodopsin. FEBS Lett. 1993, 331, 31–34.

    Article  CAS  Google Scholar 

  70. Greco, J. A.; N. L. Wagner, N. L.; Birge, R. R. Fourier transform holographic associative processors based on bacteriorhodopsin. Int. J. Unconv. Comput. 2012, 8, 433–457.

    Google Scholar 

  71. Oesterhelt, D.; Bräuchle, C.; Hampp, N. Bacteriorhodopsin: A biological material for information processing. Quart. Rev. Biophys. 1991, 24, 425–478.

    Article  CAS  Google Scholar 

  72. Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Brazhnik, K. I.; Kotkovskiy, G. E.; Christyakov, A. A.; Lukashev, E. P.; Nabiev, I. R. Photoinduced modification of quantum dot optical properties affects bacteriorhodopsin photocycle in a (quantum dot)-bacteriorhodopsin hybrid material. J. Phys.: Conf. Ser. 2014, 541, 012045.

    Google Scholar 

  73. Zaitsev, S. Y.; Lukashev, E. P.; Solovyeva, D. O.; Chistyakov, A. A.; Oleinikov, V. A. Controlled influence of quantum dots on purple membranes at interfaces. Colloids Surf. B 2014, 117, 248–251.

    Article  CAS  Google Scholar 

  74. Bunkin, F. V.; Vsevolodov, N. N.; Druzhko, A. B.; Mitsner, B. I.; Prokhorov, A. M.; Savranskii, V. V.; Tkachenko, N. W.; Shevchenko, T. B. Diffraction efficiency of bacteriorhodopsin and its analogs. Sov. Tech. Phys. Lett. 1981, 7, 630–631.

    Google Scholar 

  75. Vsevolodov, N. N.; Poltoratskii, V. A. Holograms in biochrome, a biological photochromic material. Sov. Phys. Tech. Phys. 1985, 30, 1235–1247.

    Google Scholar 

  76. Korenstein, R.; Hess, B. Hydration effects on the photocycle of bacteriorhodopsin in the thin layers of purple membrane. Nature 1977, 270, 184–186.

    Article  CAS  Google Scholar 

  77. Druzhko, A. B.; Chamorovsky, S. K. The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal. BioSystems 1995, 35, 133–136.

    Article  CAS  Google Scholar 

  78. Beischel, C. J.; Mani, V.; Govindjee, R.; Ebrey, T. G.; Knapp, D. R.; Crouch, R. K. Ring oxidized retinals form unusual bacteriorhodopsin analogue pigments. Photochem. Photobiol. 1991, 54, 977–983.

    Article  CAS  Google Scholar 

  79. Zeisel, D.; Hampp, N. Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRwt and the variant BRD96N. J. Phys. Chem. 1992, 96, 7788–7792.

    Article  CAS  Google Scholar 

  80. Thorgeirsson, T. E.; Milder, S. J.; Miercke, L. J. W.; Betlach, M. C.; Shand, R. F.; Stroud, R. M.; Kliger, D. S. Effects of Asp-96 → Asn, Asp-85 → Asn, and Arg-82 → Gln single state substitutions on the photocycle of bacteriorhodopsin. Biochemistry 1991, 30, 9133–9142.

    Article  CAS  Google Scholar 

  81. Cao, Y.; Brown, L. S.; Needleman, R.; Lanyi, J. K. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: An attempt to understand the complex kinetics of the pH changes and the N and O intermediates. Biochemistry 1993, 32, 10239–10248.

    Article  CAS  Google Scholar 

  82. Song, Q. W.; Zhang, C. P.; Gross, R.; Birge, R. Optical limiting by chemically enhanced bacteriorhodopsin films. Opt. Lett. 1993, 18, 775–777.

    Article  CAS  Google Scholar 

  83. Schobert, B.; Cupp-Vickery, J.; Hornak, V.; Smith, S. O.; Lanyi, J. K. Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal. J. Mol. Biol. 2002, 321, 715–726.

    Article  CAS  Google Scholar 

  84. Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (bacteriorhodopsin): Kinetic and spectroscopic study. J. Phys. Chem. C 2010, 114, 15358–15363.

    Article  CAS  Google Scholar 

  85. Biesso, A.; Qian, W.; Huang, X. H.; El-Sayed, M. A. Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. J. Am. Chem. Soc. 2009, 131, 2442–2443.

    Article  CAS  Google Scholar 

  86. Rakovich, A.; Donegan, J. F.; Oleinikov, V.; Molinari, M.; Sukhanova, A.; Nabiev, I.; Rakovich, Y. P. Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems. J. Photochem. Photobiol. C 2014, 20, 17–32.

    Article  CAS  Google Scholar 

  87. Griep, M.; Mallick, G.; Lueking, D. R.; Friedrich, C. R.; Karna, S. P. Integration of optical protein and quantum dot films for biosensing. In Proceedings of the 8th IEEE Conference on Nanotechnology, Arlington, Texas, USA, 2008, pp 657–659.

    Google Scholar 

  88. Lee, T.-Y.; Yeh, V.; Chuang, J. L.; Chung Chan, J. C.; Chu, L.-K.; Yu, T.-Y. Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys. J. 2015, 109, 1899–1906.

    Article  CAS  Google Scholar 

  89. Drachev, A. L.; Drachev, L. A.; Kaulen, A. D.; Khitrina, L. V. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin. Eur. J. Biochem. 1984, 138, 349–356.

    Article  CAS  Google Scholar 

  90. Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536–711.

    Article  CAS  Google Scholar 

  91. Stewart, M. H.; Huston, A. L.; Scott, A. M.; Oh, E.; Algar, W. R.; Deschamps, J. R.; Susumu, K.; Jain, V.; Prasuhn, D. E.; Blanco-Canosa, J. et al. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. ACS Nano 2013, 7, 9489–9505.

    Article  CAS  Google Scholar 

  92. Allam, N. K.; Yen, C.-W.; Near, R. D.; El-Sayed, M. A. Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 2909–2914.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of R.R.B. was supported by grants from the National Institutes of Health (GM-34548) and the Harold S. Schwenk Sr. Distinguished Chair in Chemistry. Work in the laboratory of J. Z. was partially supported by the National Science Foundation (No. CAREER-1554800). We also thank Nathan B. Gillespie for the K state spectrum shown in Fig. 5 of this report. (The K state spectrum is reproduced with permission from Ref. [24], © American Chemical Society 1999).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhao or Robert R. Birge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wax, T.J., Greco, J.A., Chen, S. et al. Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system. Nano Res. 12, 365–373 (2019). https://doi.org/10.1007/s12274-018-2224-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2224-4

Keywords

Navigation