Skip to main content
Log in

1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing highly efficient bifunctional cathode and anode electrocatalysts is very important for the large-scale application of direct formic acid fuel cells. However, the high-cost and poor CO-tolerance ability of the most commonly used Pt greatly block this process. To increase the utilization efficiency and extend bifunctional properties of precious Pt, herein, coral-like Pt3Ag nanocrystals are developed as an excellent bifunctional electrocatalyst through a facile one-pot solvothermal method. The formation mechanism of Pt3Ag nanocorals has been elaborated well via a series of control experiments. It is proved that 1-naphthol serving as a guiding surfactant plays a key role in the formation of high-quality nanocorals. Thanks to the unique coral-like structure and alloy effects, the developed Pt3Ag nanocorals present significantly enhanced electrocatalytic properties (including activity, stability and CO-tolerance ability) towards both the cathodic oxygen reduction and anodic formic acid oxidation, as compared with those of commercial Pt black and Pt-based nanoparticles. The present synthetic method can also be extended to fabricate other bimetallic electrocatalysts with unique morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493–4496.

    Article  CAS  Google Scholar 

  2. Zhang, L. Y.; Zhao, Z. L.; Yuan, W. Y.; Li, C. M. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 2016, 8, 1905–1909.

    Article  CAS  Google Scholar 

  3. Lai, J. P.; Niu, W. X; Li, S. P.; Wu, F. X.; Luque, R.; Xu, G. B. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 2016, 4, 807–812.

    Article  CAS  Google Scholar 

  4. Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

    Article  CAS  Google Scholar 

  5. Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686–4696.

    Article  CAS  Google Scholar 

  6. Feng, L. G.; Chang, J. F.; Jiang, K.; Xue, H. G.; Liu, C. P.; Cai, W. B.; Xing, W.; Zhang, J. J. Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 2016, 30, 355–361.

    Article  CAS  Google Scholar 

  7. Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.

    Article  CAS  Google Scholar 

  8. Han, S. H.; Liu, H. M.; Bai, J.; Tian, X. L.; Xia, B. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Platinum-silver alloy nanoballoon nanoassemblies with super catalytic activity for the formate electrooxidation. ACS Appl. Energy Mater. 2018, 1, 1252–1258.

    Article  CAS  Google Scholar 

  9. Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core-shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015–18021.

    Article  CAS  Google Scholar 

  10. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

    Article  CAS  Google Scholar 

  11. Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.

    Article  CAS  Google Scholar 

  12. Fu, G. T.; Liu, Y.; Wu, Z. X.; Lee, J. M. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis. ACS Appl. Nano Mater. 2018, 1, 1904–1911.

    Article  CAS  Google Scholar 

  13. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

    Article  CAS  Google Scholar 

  14. Xiong, Y.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Zhang, S. L.; Ren, H. L.; Rong, H. P.; Zheng, X. S; Chen, C.; Peng, Q. et al. PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chem. Commun. 2018, 54, 3951–3954.

    Article  CAS  Google Scholar 

  15. Wu, H. F.; Qi, W. H.; Peng, H. C.; He, J. T. Facile synthesis of Ag@Pt core-shell nanoparticles with different dendrites Pt shells. Chemistry Select 2017, 2, 9344–9348.

    CAS  Google Scholar 

  16. Liu, Q.; He, Y. M.; Weng, X. X.; Wang, A. J.; Yuan, P. X.; Fang, K. M.; Feng, J. J. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution. J. Colloid Interface Sci. 2018, 513, 455–463.

    Article  CAS  Google Scholar 

  17. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinumcobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    Article  CAS  Google Scholar 

  18. Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinumlead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464–4470.

    Article  CAS  Google Scholar 

  19. Tong, X.; Zhang, J. M.; Zhang, G. X.; Wei, Q. L.; Chenitz, R.; Claverie, J. P.; Sun, S. H. Ultrathin carbon-coated Pt/carbon nanotubes: A highly durable electrocatalyst for oxygen reduction. Chem. Mater. 2017, 29, 9579–9587.

    Article  CAS  Google Scholar 

  20. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  CAS  Google Scholar 

  21. Chen, Y. F.; Fu, G. T.; Li, Y. Y.; Gu, Q. S.; Xu, L.; Sun, D. M.; Tang, Y. W. L-glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst. J. Mater. Chem. A 2017, 5, 3774–3779.

    CAS  Google Scholar 

  22. Han, L.; Cui, P. L.; He, H. Y.; Liu, H.; Peng, Z. J.; Yang, J. A seedmediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. J. Power Sources 2015, 286, 488–494.

    Article  CAS  Google Scholar 

  23. Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307

    Article  CAS  Google Scholar 

  24. Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.

    CAS  Google Scholar 

  25. Li, Z. S.; Li, Y. Y.; He, C. Y.; Shen, P. K. Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. J. Mater. Chem. A 2017, 5, 23158–23169.

    Article  CAS  Google Scholar 

  26. Zhu, J. B.; Xiao, M. L.; Li, K.; Liu, C. P.; Xing, W. Superior electrocatalytic activity from nanodendritic structure consisting of a PtFe bimetallic core and Pt shell. Chem. Commun. 2015, 51, 3215–3218.

    Article  CAS  Google Scholar 

  27. Zhang, B. W.; Zhang, Z. C.; Liao, H. G.; Gong, Y.; Gu, L.; Qu, X. M.; You, L. X.; Liu, S.; Huang, L.; Tian, X. C. et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy 2016, 19, 198–209.

    Article  CAS  Google Scholar 

  28. Li, C. J.; Xu, Y.; Li, Y. H.; Xue, H. R.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Enhanced dual fuel cell electrocatalysis with trimetallic PtPdCo mesoporous nanoparticles. Chem. Asian J. 2018, 13, 2939–2946.

    Article  CAS  Google Scholar 

  29. Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940.

    Article  CAS  Google Scholar 

  30. Romanowski, S.; Bartczak, W. M.; Wesolkowski, R. Density functional calculations of the hydrogen adsorption on transition metals and their alloys. An application to catalysis. Langmuir 1999, 15, 5773–5780.

    CAS  Google Scholar 

  31. Wang, H. J.; Yin, S. L.; Xu, Y.; Li, X. N.; Alshehri, A. A.; Yamauchi, Y.; Xue, H. R.; Kaneti, Y. V.; Wang, L. Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8662–8668.

    Article  CAS  Google Scholar 

  32. Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755–19763.

    Article  CAS  Google Scholar 

  33. Eid, K.; Ahmad, Y. H.; Yu, H. J.; Li, Y. H.; Li, X. N.; Alqaradawi, S. Y.; Wang, H. J.; Wang, L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for co-poisoning. Nanoscale 2017, 9, 18881–18889.

    Article  CAS  Google Scholar 

  34. Demirci, U. B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007, 173, 11–18.

    Article  CAS  Google Scholar 

  35. Xu, J. B.; Zhao, T. S; Liang, Z. X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112, 17362–17367.

    Article  CAS  Google Scholar 

  36. Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S. X.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016, 16, 6644–6649.

    Article  CAS  Google Scholar 

  37. Fu, T.; Fang, J.; Wang, C. S.; Zhao, J. B. Hollow porous nanoparticles with Pt skin on a Ag-Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 8803–8811.

    Article  CAS  Google Scholar 

  38. Liu, W.; Haubold, D.; Rutkowski, B.; Oschatz, M.; Huebner, R.; Werheid, M.; Ziegler, C.; Sonntag, L.; Liu, S. H.; Zheng, Z. K. et al. Selfsupporting hierarchical porous PtAg alloy nanotubular aero-gels as highly active and durable electrocatalysts. Chem. Mater. 2016, 28, 6477–6483.

    Article  CAS  Google Scholar 

  39. Chen, Y. F.; Jiang, X.; Li, Y. Y.; Li, P.; Liu, Q. C.; Fu, G. T.; Xu, L.; Sun, D. M.; Tang, Y. W. General strategy for synthesis of Pd3M (M = Co and Ni) nanoassemblies as high-performance catalysts for electrochemical oxygen reduction. Adv. Mater. Interfaces 2018, 5, 1701015.

    Article  CAS  Google Scholar 

  40. Mao, J. J.; Cao, T.; Chen, Y. J.; Wu, Y.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chem. Commun. 2015, 51, 15406–15409.

    Article  CAS  Google Scholar 

  41. Pei, J. J.; Mao, J. J.; Liang, X.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Ultrathin Pt-Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustain. Chem. Eng. 2018, 6, 77–81.

    Article  CAS  Google Scholar 

  42. Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.

    Article  CAS  Google Scholar 

  43. Yang, J. H.; Chen, X. J.; Ye, F.; Wang, C. X.; Zheng, Y. G.; Yang, J. Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. J. Mater. Chem. 2011, 21, 9088–9094.

    Article  CAS  Google Scholar 

  44. Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G. X.; Sacher, E.; Dodelet, J. P. Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 2008, 20, 571–574.

    Article  CAS  Google Scholar 

  45. Zhang, X. W.; Yin, H. J.; Wang, J. F.; Chang, L.; Gao, Y.; Liu, W.; Tang, Z. Y. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 2013, 5, 8392–8397.

    Article  CAS  Google Scholar 

  46. Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinum-palladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem. Asian J. 2016, 11, 1939–1944.

    Article  CAS  Google Scholar 

  47. Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.

    Article  CAS  Google Scholar 

  48. Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small 2016, 12, 524–533.

    Article  CAS  Google Scholar 

  49. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  CAS  Google Scholar 

  50. Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.

    Article  CAS  Google Scholar 

  51. Wang, A. J.; Ju, K. J.; Zhang, Q. L.; Song, P.; Wei, J.; Feng, J. J. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions. J. Power Sources 2016, 326, 227–234.

    Article  CAS  Google Scholar 

  52. Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.

    Article  CAS  Google Scholar 

  53. Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.

    Article  CAS  Google Scholar 

  54. Fu, G. T.; Zhang, Q.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Res. 2015, 8, 3963–3971.

    Article  CAS  Google Scholar 

  55. Xu, H.; Yan, B.; Li, S. M.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. Facile construction of N-doped graphene supported hollow PtAg nanodendrites as highly efficient electrocatalysts toward formic acid oxidation reaction. ACS Sustain. Chem. Eng. 2018, 6, 609–617.

    Article  CAS  Google Scholar 

  56. Kim, Y.; Kim, H.; Kim, W. B. PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media. Electrochem. Commun. 2014, 46, 36–39.

    Article  CAS  Google Scholar 

  57. Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105–114.

    Article  CAS  Google Scholar 

  58. Fang, C. H.; Zhao, J.; Zhao, G. L.; Kuai, L.; Geng, B. Y. Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts. Nanoscale 2016, 8, 14971–14978.

    Article  CAS  Google Scholar 

  59. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.

    Article  CAS  Google Scholar 

  60. Fu, G. T.; Ding, L. F.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Facile water-based synthesis and catalytic properties of platinum-gold alloy nanocubes. CrystEngComm 2014, 16, 1606–1610.

    Article  CAS  Google Scholar 

  61. Huang, Y. Y.; Zhao, T. S.; Zeng, L.; Tan, P.; Xu, J. B. A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation. Electrochim. Acta 2016, 190, 956–963.

    Article  CAS  Google Scholar 

  62. Engelbrekt, C.; Šešelj, N.; Poreddy, R.; Riisager, A.; Ulstrup, J.; Zhang, J. Atomically thin Pt shells on Au nanoparticle cores: Facile synthesis and efficient synergetic catalysis. J. Mater. Chem. A 2016, 4, 3278–3286.

    Article  CAS  Google Scholar 

  63. Jiang, B.; Li, C. L.; Tang, J.; Takei, T.; Kim, J. H.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 10037–10041.

    Article  CAS  Google Scholar 

  64. Weng, X. X.; Liu, Q.; Feng, J. J.; Yuan, J. H.; Wang, A. J. Dendrite-like PtAg alloyed nanocrystals: Highly active and durable advanced electrocatalysts for oxygen reduction and ethylene glycol oxidation reactions. J. Colloid Interface Sci. 2017, 504, 680–687.

    Article  CAS  Google Scholar 

  65. Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9487.

    Article  CAS  Google Scholar 

  66. Jiang, L. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation. ChemElectroChem 2017, 4, 2909–2914.

    Article  CAS  Google Scholar 

  67. Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.

    Article  CAS  Google Scholar 

  68. Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.

    Article  CAS  Google Scholar 

  69. Zheng, F. L.; Luk, S. Y.; Kwong, T. L.; Yung, K. F. Synthesis of hollow PtAg alloy nanospheres with excellent electrocatalytic performances towards methanol and formic acid oxidations. RSC Adv. 2016, 6, 44902–44907.

    Article  CAS  Google Scholar 

  70. Wang, A. J.; Liu, L.; Lin, X. X.; Yuan, J. H.; Feng, J. J. One-pot synthesis of 3D freestanding porous PtAg hollow chain-like networks as efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2017, 245, 883–892.

    Article  CAS  Google Scholar 

  71. Feng, Y. Y.; Bi, L. X.; Liu, Z. H.; Kong, D. S.; Yu, Z. Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J. Catal. 2012, 290, 18–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21576139, 21875112, 21576050 and 51602052), Jiangsu Provincial Natural Science Foundation of China (No. BK20150604), National and Local Joint Engineering Research Center of Biomedical Functional Materials, and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiancheng Zhou, Gengtao Fu or Yawen Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Liu, Y., Wang, J. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 12, 323–329 (2019). https://doi.org/10.1007/s12274-018-2218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2218-2

Keywords

Navigation