Skip to main content
Log in

Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS2 transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional semiconductors, such as MoS2 are known to be highly susceptible to diverse molecular adsorbates on the surface during fabrication, which could adversely affect device performance. To ensure high device yield, uniformity and performance, the semiconductor industry has long employed wet chemical cleaning strategies to remove undesirable surface contaminations, adsorbates, and native oxides from the surface of Si wafers. A similarly effective surface cleaning technique for two-dimensional materials has not yet been fully developed. In this study, we propose a wet chemical cleaning strategy for MoS2 by using N-methyl-2-pyrrolidone. The cleaning process not only preserves the intrinsic properties of monolayer MoS2, but also significantly improves the performance of monolayer MoS2 field-effect-transistors. Superior device on current of 12 μA·μm–1 for a channel length of 400 nm, contact resistance of 15 kΩ·μm, field-effect mobility of 15.5 cm2·V–1·s–1, and the average on–off current ratio of 108 were successfully demonstrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2002, pp 47–50.

    Chapter  Google Scholar 

  2. Uchida, K.; Koga, J.; Takagi, S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs—Coulomb scattering, volume inversion, and δTSOI-, induced scattering. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, USA, 2003, pp 33.5.1–33.5.4.

    Google Scholar 

  3. Schmidt, M.; Lemme, M. C.; Gottlob, H. D. B.; Driussi, F.; Selmi, L.; Kurz, H. Mobility extraction in SOI MOSFETs with sub 1 nm body thickness. Solid-State Electron. 2009, 53, 1246–1251.

    Article  Google Scholar 

  4. Uchida, K.; Takagi, S. Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 2003, 82, 2916–2918.

    Article  Google Scholar 

  5. Low, T.; Li, M. F.; Fan, W. J.; Ng, S. T.; Yeo, Y. C.; Zhu, C.; Chin, A.; Chan, L.; Kwong, D. L. Impact of surface roughness on silicon and germanium ultra-thin-body MOSFETs. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2004, pp 151–154.

    Google Scholar 

  6. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  Google Scholar 

  7. Wang, H.; Yu, L. L.; Lee, Y.-H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  Google Scholar 

  8. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thicknessmodulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    Article  Google Scholar 

  9. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  10. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  11. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    Article  Google Scholar 

  12. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  Google Scholar 

  13. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    Article  Google Scholar 

  14. Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  15. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    Article  Google Scholar 

  16. Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 2013, 13, 2640–2646.

    Article  Google Scholar 

  17. Li, S.-L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W.-W.; Lin, Y.-F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.

    Article  Google Scholar 

  18. Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

    Article  Google Scholar 

  19. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    Article  Google Scholar 

  20. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  21. Jena, D.; Banerjee, K.; Xing, G. H. 2D crystal semiconductors: Intimate contacts. Nat. Mater. 2014, 13, 1076–1078.

    Article  Google Scholar 

  22. Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in twodimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    Article  Google Scholar 

  23. Du, Y. C.; Yang, L. M.; Zhang, J. Y.; Liu, H.; Majumdar, K.; Kirsch, P. D.; Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 2014, 35, 599–601.

    Article  Google Scholar 

  24. Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H.-C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 2016, 16, 6337–6342.

    Article  Google Scholar 

  25. English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824–3830.

    Article  Google Scholar 

  26. Ma, N.; Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 2014, 4, 011043.

    Google Scholar 

  27. Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563–6570.

    Article  Google Scholar 

  28. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  Google Scholar 

  29. Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24, 095202.

    Article  Google Scholar 

  30. Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

    Article  Google Scholar 

  31. Li, L.; Engel, M.; Farmer, D. B.; Han, S. J.; Wong, H. S. P. High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 2016, 10, 4672–4677.

    Article  Google Scholar 

  32. Yang, L. M.; Qiu, G.; Si, M. W.; Charnas, A. R.; Milligan, C. A.; Zemlyanov, D. Y.; Zhou, H.; Du, Y. C.; Lin, Y. M.; Tsai, W. et al. Few-layer black phosporous PMOSFETs with BN/Al2O3 bilayer gate dielectric: Achieving Ion = 850 µA/µm, gm = 340 µS/µm, and Rc = 0.58 kO·µm. In Proceedings of the 2016 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2016, pp 5.5.1–5.5.4.

    Chapter  Google Scholar 

  33. Chang, C. Y.; Sze, S. M. ULSI Technology; McGraw-Hill College: New York, 1996.

    Google Scholar 

  34. Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater. 2016, 28, 337–348.

    Article  Google Scholar 

  35. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  Google Scholar 

  36. Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water. J. Phys. Chem. Lett. 2016, 7, 4884–4890.

    Article  Google Scholar 

  37. Thodkar, K.; Thompson, D.; Lüönd, F.; Moser, L.; Overney, F.; Marot, L.; Schönenberger, C.; Jeanneret, B.; Calame, M. Restoring the electrical properties of CVD graphene via physisorption of molecular adsorbates. ACS Appl. Mater. Interfaces 2017, 9, 25014–25022.

    Article  Google Scholar 

  38. Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, 2006.

    Google Scholar 

  39. Yoon, M. H.; Kim, C.; Facchetti, A.; Marks, T. J. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 2006, 128, 12851–12869.

    Article  Google Scholar 

  40. Park, J.-S.; Jeong, J. K.; Chung, H.-J.; Mo, Y.-G.; Kim, H. D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104.

    Article  Google Scholar 

  41. Hu, C. M. Modern Semiconductor Devices for Integrated Circuits; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010.

    Google Scholar 

  42. Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V; Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 2017, 4, 011009.

    Article  Google Scholar 

  43. Cui, X.; Lee, G.-H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C.-H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol. 2015, 10, 534–540.

    Article  Google Scholar 

  44. Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Sea, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

    Article  Google Scholar 

  45. Liu, W.; Sarkar, D.; Kang, J. H.; Cao, W.; Banerjee, K. Impact of contact on the operation and performance of back-gated monolayer MoS2 fieldeffect- transistors. ACS Nano 2015, 9, 7904–7912.

    Article  Google Scholar 

  46. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the fruitful discussion with Dr. Yao-Jen Lee, and Yi-Ling Jian. This work was supported by the “National Science Council” under contract No. MOST 105-2112-M-003-016-MY3. This work was also in part supported by the “National Nano Device Laboratories”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuo-Hung Hou or Yann-Wen Lan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PC., Lin, CP., Hong, CJ. et al. Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS2 transistors. Nano Res. 12, 303–308 (2019). https://doi.org/10.1007/s12274-018-2215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2215-5

Keywords

Navigation