Skip to main content
Log in

Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available energy densities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with different morphologies (ordered two-dimensional porous nanosheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcination methods. Ordered two-dimensional Co3O4 nanosheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10,417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1,000 mAh/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198.

    Article  Google Scholar 

  2. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  3. Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

    Article  Google Scholar 

  4. Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

    Article  Google Scholar 

  5. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  Google Scholar 

  6. Luo, X. Y.; Amine, R.; Lau, K. C.; Lu, J.; Zhan, C.; Curtiss, L. A.; Al Hallaj, S.; Chaplin, B. P.; Amine, K. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Res. 2017, 10, 4327–4336.

    Article  Google Scholar 

  7. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  8. Guo, X. W.; Liu, P.; Han, J. H.; Ito, Y.; Hirata, A.; Fujita, T.; Chen, M. W. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li-O2 batteries. Adv. Mater. 2015, 27, 6137–6143.

    Article  Google Scholar 

  9. Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-shellstructured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

    Article  Google Scholar 

  10. Tan, P.; Wei, Z. H.; Shyy, W.; Zhao, T. S.; Zhu, X. B. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air. Energy Environ. Sci. 2016, 9, 1783–1793.

    Article  Google Scholar 

  11. Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res. 2016, 9, 1913–1920.

    Article  Google Scholar 

  12. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  13. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  Google Scholar 

  14. Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

    Article  Google Scholar 

  15. Prinz, J.; Pignedoli, C. A.; Stöckl, Q. S.; Armbrüster, M.; Brune, H.; Gröning, O.; Widmer, R.; Passerone, D. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: The road to selective hydrogenation. J. Am. Chem. Soc. 2014, 136, 11792–11798.

    Article  Google Scholar 

  16. Sun, B.; Chen, S. Q.; Liu, H.; Wang, G. X. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries. Adv. Funct. Mater. 2015, 25, 4436–4444.

    Article  Google Scholar 

  17. Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

    Article  Google Scholar 

  18. Mohamed, S. G.; Tsai, Y. Q.; Chen, C. J.; Tsai, Y. T.; Hung, T. F.; Chang, W. S.; Liu, R. S. Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries. ACS Appl. Mater. Interfaces 2015, 7, 12038–12046.

    Article  Google Scholar 

  19. Han, X. P.; Cheng, F. Y.; Chen, C. C.; Hu, Y. X.; Chen, J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2015, 8, 156–164.

    Article  Google Scholar 

  20. Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

    Article  Google Scholar 

  21. He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

    Article  Google Scholar 

  22. Li, K. K.; Jiao, T. F.; Xing, R. R.; Zou, G. D.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 2018, 61, 728–736.

    Article  Google Scholar 

  23. Wang, X.; Weng, Q. H.; Yang, Y. J.; Bando, Y.; Golberg, D. Hybrid twodimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 2016, 45, 4042–4073.

    Article  Google Scholar 

  24. Qin, J. Q.; Zhou, F.; Xiao, H.; Ren, R. Y.; Wu, Z. S. Mesoporous polypyrrolebased graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233–242.

    Article  Google Scholar 

  25. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  26. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Article  Google Scholar 

  27. Xu, S. M.; Zhu, Q. C.; Du, F. H.; Li, X. H.; Wei, X.; Wang, K. X.; Chen, J. S. Co3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability. Dalton Trans. 2015, 44, 8678–8684.

    Article  Google Scholar 

  28. Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

    Article  Google Scholar 

  29. Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

    Article  Google Scholar 

  30. Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

    Article  Google Scholar 

  31. Yan, Q. Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J. Hazard. Mater. 2012, 209–210, 385–391.

    Article  Google Scholar 

  32. Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

    Article  Google Scholar 

  33. Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

    Article  Google Scholar 

  34. Armelao, L.; Barreca, D.; Gross, S.; Tondello, E. Sol-gel and CVD Co3O4 thin films characterized by XPS. Surf. Sci. Spectra 2001, 8, 14–23.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21606021) and Youth Scholars Program of Beijing Normal University (No. 2014NT07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyun Nan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, M., Yuan, M. et al. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 12, 299–302 (2019). https://doi.org/10.1007/s12274-018-2214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2214-6

Keywords

Navigation