Skip to main content
Log in

Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman scattering (TERS) can be used for the structural and chemical characterization of materials with a nanoscale resolution, and offers numerous advantages compared to other forms of imaging. We use TERS to track the local structural features of a CVD-grown graphene monolayer. Ag nanoparticles were added to AFM probes using ion-beam sputtering in order to make them TERS-active. Such modification provides probes with large factors of enhancement and good reproducibility. TERS measurements on graphene show an emergence of a defect-induced D-Raman band and a strain-induced shoulder of the graphene’s G-band. Comparison of TERS results with micro-Raman for oxidized graphene suggests that local oxidation occurs with the introduction of sp3 defects, under TERS conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: New York, USA, 2006.

    Book  Google Scholar 

  2. Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708–6709.

    Article  Google Scholar 

  3. Zhang, W. H.; Yeo, B. S.; Schmid, T.; Zenobi, R. Single molecule tip-enhanced raman spectroscopy with silver tips. J. Phys. Chem. C 2007, 111, 1733–1738.

    Article  Google Scholar 

  4. Sonntag, M. D.; Klingsporn, J. M.; Garibay, L. K.; Roberts, J. M.; Dieringer, J. A.; Seideman, T.; Scheidt, K. A.; Jensen, L.; Schatz, G. C.; van Duyne, R. P. Single-molecule tipenhanced raman spectroscopy. J. Phys. Chem. C 2012, 116, 478–483.

    Article  Google Scholar 

  5. Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

    Article  Google Scholar 

  6. Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.

    Article  Google Scholar 

  7. Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; van Duyne, R. P. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 17187–17192.

    Article  Google Scholar 

  8. Bailo, E.; Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658–1661.

    Article  Google Scholar 

  9. Krasnoslobodtsev, A. V.; Deckert-Gaudig, T.; Zhang, Y. L.; Deckert, V.; Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 2016, 165, 26–33.

    Article  Google Scholar 

  10. Kurouski, D.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. K. Structure and composition of insulin fibril surfaces probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323–13329.

    Article  Google Scholar 

  11. Krasnoslobodtsev, A. V.; Portillo, A. M.; Deckert-Gaudig, T.; Deckert, V.; Lyubchenko, Y. L. Nanoimaging for prion related diseases. Prion 2010, 4, 265–274.

    Article  Google Scholar 

  12. Böhme, R.; Richter, M.; Cialla, D.; Rösch, P.; Deckert, V.; Popp, J. Towards a specific characterisation of components on a cell surface—combined TERS-investigations of lipids and human cells. J. Raman Spectrosc. 2009, 40, 1452–1457.

    Article  Google Scholar 

  13. Richter, M.; Hedegaard, M.; Deckert-Gaudig, T.; Deckert, V. Multivariate analysis of TERS maps on a single human colon cancer cell. AIP Conf. Proc. 2010, 1267, 1245–1246.

    Article  Google Scholar 

  14. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  Google Scholar 

  15. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progr. Mater. Sci. 2017, 90, 75–127.

    Article  Google Scholar 

  16. Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.

    Article  Google Scholar 

  17. Gupta, V.; Sharma, N.; Singh, U.; Arif, M.; Singh, A. Higher oxidation level in graphene oxide. Optik 2017, 143, 115–124.

    Article  Google Scholar 

  18. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

    Article  Google Scholar 

  19. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  20. Wei, L. M.; Wu, F.; Shi, D. W.; Hu, C. C.; Li, X. L.; Yuan, W. E.; Wang, J.; Zhao, J.; Geng, H. J.; Wei, H. et al. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci. Rep. 2013, 3, 2636.

    Article  Google Scholar 

  21. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  22. Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Manifestation of charged and strained graphene layers in the Raman response of graphite intercalation compounds. ACS Nano 2013, 7, 9249–9259.

    Article  Google Scholar 

  23. Goldsche, M.; Sonntag, J.; Khodkov, T.; Verbiest, G. J.; Reichardt, S.; Neumann, C.; Ouaj, T.; von den Driesch, N.; Buca, D.; Stampfer, C. Tailoring mechanically tunable strain fields in graphene. Nano Lett. 2018, 18, 1707–1713.

    Article  Google Scholar 

  24. Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183.

    Article  Google Scholar 

  25. López-Díaz, D.; López Holgado, M.; García-Fierro, J. L.; Velázquez, M. M. Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 2017, 121, 20489–20497.

    Article  Google Scholar 

  26. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  27. Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.

    Article  Google Scholar 

  28. Wang, Q. H.; Shih, C.-J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866–18875.

    Article  Google Scholar 

  29. Beams, R. Tip-enhanced Raman scattering of graphene. J. Raman Spectrosc. 2018, 49, 157–167.

    Article  Google Scholar 

  30. Snitka, V.; Rodrigues, R. D.; Lendraitis, V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron. Eng. 2011, 88, 2759–2762.

    Article  Google Scholar 

  31. Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.

    Article  Google Scholar 

  32. Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442–8448.

    Article  Google Scholar 

  33. Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919–18926.

    Article  Google Scholar 

  34. Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58–67.

    Article  Google Scholar 

  35. Strelchuk, V. V.; Nikolenko, A. S.; Gubanov, V. O.; Biliy, M. M.; Bulavin, L. A. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering. J. Nanosci. Nanotechnol. 2012, 12, 8671–8675.

    Article  Google Scholar 

  36. Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.

    Article  Google Scholar 

  37. Shan, C. S.; Tang, H.; Wong, T.; He, L. F.; Lee, S.-T. Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier. Adv. Mater. 2012, 24, 2491–2495.

    Article  Google Scholar 

  38. Luo, Z. Q.; Cong, C. X.; Zhang, J.; Xiong, Q. H.; Yu, T. The origin of sub-bands in the Raman D-band of graphene. Carbon 2012, 50, 4252–4258.

    Article  Google Scholar 

  39. Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

    Article  Google Scholar 

  40. Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.

    Article  Google Scholar 

  41. Zandiatashbar, A.; Lee, G. H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186.

    Article  Google Scholar 

  42. Ma, J. W.; Habrioux, A.; Luo, Y.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Balbuena, P. B.; Alonso-Vante, N. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 11891–11904.

    Article  Google Scholar 

  43. Ahn, G. H.; Kim, H. R.; Hong, B. H.; Ryu, S. M. Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates. Carbon Lett. 2012, 13, 34–38.

    Article  Google Scholar 

  44. Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017, 8, 15192.

    Article  Google Scholar 

  45. Shroder, R. E.; Nemanich, R. J.; Glass, J. T. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys. Rev. B 1990, 41, 3738–3745.

    Article  Google Scholar 

  46. Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304–7308.

    Article  Google Scholar 

  47. Schmid, T.; Yeo, B.-S.; Leong, G.; Stadler, J.; Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 2009, 40, 1392–1399.

    Article  Google Scholar 

  48. Beams, R.; Cancado, L. G.; Novotny, L. Low temperature raman study of the electron coherence length near graphene edges. Nano Lett. 2011, 11, 1177–1181.

    Article  Google Scholar 

  49. Lee, J.; Shim, S.; Kim, B.; Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem.–Eur. J. 2011, 17, 2381–2387.

    Article  Google Scholar 

  50. Maximiano, R. V.; Beams, R.; Novotny, L.; Jorio, A.; Cançado, L. G. Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B 2012, 85, 235434.

    Article  Google Scholar 

  51. Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; van Duyne, R. P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853.

    Article  Google Scholar 

  52. Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Optimized surfaceenhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 2003, 82, 3095–3097.

    Article  Google Scholar 

  53. Sow, I.; Grand, J.; Lévi, G.; Aubard, J.; Félidj, N.; Tinguely, J. C.; Hohenau, A.; Krenn, J. R. Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes. J. Phys. Chem. C 2013, 117, 25650–25658.

    Article  Google Scholar 

  54. Wang, P.; Zhang, W.; Liang, O.; Pantoja, M.; Katzer, J.; Schroeder, T.; Xie, Y.-H. Giant optical response from graphene–plasmonic system. ACS Nano 2012, 6, 6244–6249.

    Article  Google Scholar 

  55. Su, W. T.; Kumar, N.; Dai, N.; Roy, D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 8227–8230.

    Article  Google Scholar 

  56. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.

    Article  Google Scholar 

  57. Wang, J. J.; Saito, Y.; Batchelder, D. N.; Kirkham, J.; Robinson, C.; Smith, D. A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Appl. Phys. Lett. 2005, 86, 263111.

    Article  Google Scholar 

  58. Ratinac, K. R.; Yang, W. R.; Ringer, S. P.; Braet, F. Toward ubiquitous environmental gas sensors—capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167–1176.

    Article  Google Scholar 

  59. Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S.-Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.

    Article  Google Scholar 

  60. Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A. Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 2008, 101, 026801.

    Article  Google Scholar 

  61. Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

    Article  Google Scholar 

  62. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.

    Article  Google Scholar 

  63. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  64. Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  Google Scholar 

  65. Zhou, S.; Bongiorno, A. Origin of the chemical and kinetic stability of graphene oxide. Sci. Rep. 2013, 3, 2484.

    Article  Google Scholar 

  66. Lv, G. Q.; Wang, H. L.; Yang, Y. X.; Deng, T. S.; Chen, C. M.; Zhu, Y. L.; Hou, X. L. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal. 2015, 5, 5636–5646.

    Article  Google Scholar 

  67. Park, S.; Lee, K.-S.; Bozoklu, G.; Cai, W. W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical crosslinking. ACS Nano 2008, 2, 572–578.

    Article  Google Scholar 

  68. Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the following grants: NIGMS 2P20GM103480-09 to AVK; Funds for Undergraduate Scholarly Experiences from the Office of Research and Creative Activity at UNO to J. S. The authors would like to thank Dr. Yuri L. Lyubchenko, at the Department of Pharmaceutical Sciences, University of Nebraska Medical Center, for supporting initial stages of this study and J. S. during his Summer Undergraduate Research Project (SURP) at UNMC. We acknowledge the contribution of Dr. Ivan Vlassiouk (Oak Ridge National Laboratory) for his help with synthesis of CVD graphene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Krasnoslobodtsev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolsky, J.M., Krasnoslobodtsev, A.V. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 11, 6346–6359 (2018). https://doi.org/10.1007/s12274-018-2158-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2158-x

Keywords

Navigation