Skip to main content
Log in

Aminosaccharide–gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bacterial infection has continued to be a leading cause of death or disability worldwide because of antibiotic resistance. Antibiotic agents specific to certain taxa of bacteria, i.e., narrow-spectrum antibiotics, have become useful because they can kill bacteria without resulting in broad-spectrum drug resistance. In this study, we describe a series of antibiotics based on combining gold nanoparticles (AuNPs) with aminosaccharides, even though these AuNPs or aminosaccharides by themselves are ineffective against any bacteria. The AuNP-based multivalent aminosaccharides can effectively and selectively inhibit the growth of Gram-positive bacteria (including drug-resistant superbacteria). In particular, aminosaccharide-modified AuNPs are effective against methicillin-resistant Staphylococcus aureus (MRSA), a particularly hard-to-treat strain. This report carves out a way to explore antibiotics by combining AuNPs and an aminosaccharide as multivalent nanostructures, neither of which by itself is effective as an antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc. 2010, 132, 12349–12356.

    Article  Google Scholar 

  2. Yang, X. L.; Yang, J. C.; Wang, L.; Ran, B.; Jia, Y. X.; Zhang, L. M.; Yang, G.; Shao, H. W.; Jiang, X. Y. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 2017, 11, 5737–5745.

    Article  Google Scholar 

  3. Feng, Y.; Chen, W. W.; Jia, Y. X.; Tian, Y.; Zhao, Y. Y.; Long, F.; Rui, Y. K.; Jiang, X. Y. N-heterocyclic moleculecapped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale 2016, 8, 13223–13227.

    Article  Google Scholar 

  4. Zhao, Y. Y.; Chen, Z. L.; Chen, Y. F.; Xu, J.; Li, J. H.; Jiang, X. Y. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J. Am. Chem. Soc. 2013, 135, 12940–12943.

    Article  Google Scholar 

  5. Rashid, M. U.; Weintraub, A.; Nord, C. E. Effect of new antimicrobial agents on the ecological balance of human microflora. Anaerobe 2012, 18, 249–253.

    Article  Google Scholar 

  6. Rea, M. C.; Dobson, A.; O’Sullivan, O.; Crispie, F.; Fouhy, F.; Cotter, P. D.; Shanahan, F.; Kiely, B.; Hill, C.; Ross, R. P. Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA 2011, 108, 4639–4644.

    Article  Google Scholar 

  7. Li, Y.; Fukushima, K.; Coady, D. J.; Engler, A. C.; Liu, S. Q.; Huang, Y.; Cho, J. S.; Guo, Y.; Miller, L. S.; Tan, J. P. K. et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: Stereocomplex-driven supramolecular assemblies. Angew. Chem., Int. Ed. 2013, 52, 674–678.

    Article  Google Scholar 

  8. Bell, M. Antibiotic misuse: A global crisis. JAMA Intern. Med. 2014, 174, 1920–1921.

    Article  Google Scholar 

  9. Courvalin, P. Why is antibiotic resistance a deadly emerging disease? Clin. Microbiol. Infec. 2016, 22, 405–407.

    Article  Google Scholar 

  10. Roche, M.; Bornet, C.; Monges, P.; Stein, A.; Gensollen, S.; Seng, P. Misuse of antibiotics reserved for hospital settings in outpatients: A prospective clinical audit in a university hospital in Southern France. Int. J. Antimicrob. Ag. 2016, 48, 96–100.

    Article  Google Scholar 

  11. Yang, C. H.; Ren, C. H.; Zhou, J.; Liu, J. J.; Zhang, Y. M.; Huang, F.; Ding, D.; Xu, B.; Liu, J. F. Dual fluorescent-and isotopic-labelled self-assembling vancomycin for in vivo imaging of bacterial infections. Angew. Chem., Int. Ed. 2017, 56, 2356–2360.

    Article  Google Scholar 

  12. Zhang, J. Y.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J. Am. Chem. Soc. 2014, 136, 4873–4876.

    Article  Google Scholar 

  13. Chang, C. M.; Chern, J.; Chen, M. Y.; Huang, K. F.; Chen, C. H.; Yang, Y. L.; Wu, S. H. Avenaciolides: Potential mura-targeted inhibitors against peptidoglycan biosynthesis in methicillin-resistant Staphylococcus aureus (MRSA). J. Am. Chem. Soc. 2015, 137, 267–275.

    Article  Google Scholar 

  14. Gu, H. W.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003, 3, 1261–1263.

    Article  Google Scholar 

  15. Huh, A. J.; Kwon, Y. J. "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145.

    Article  Google Scholar 

  16. Laverty, G.; McCloskey, A. P.; Gilmore, B. F.; Jones, D. S.; Zhou, J.; Xu, B. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules 2014, 15, 3429–3439.

    Article  Google Scholar 

  17. Zhao, Y. Y.; Ye, C. J.; Liu, W. W.; Chen, R.; Jiang, X. Y. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew. Chem., Int. Ed. 2014, 53, 8127–8131.

    Article  Google Scholar 

  18. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636–1653.

    Article  Google Scholar 

  19. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

    Article  Google Scholar 

  20. Liu, Y.; Ma, W. S.; Liu, W. W.; Li, C.; Liu, Y. L.; Jiang, X. Y.; Tang, Z. Y. Silver(I)-glutathione biocoordination polymer hydrogel: Effective antibacterial activity and improved cytocompatibility. J. Mater. Chem. 2011, 21, 19214–19218.

    Article  Google Scholar 

  21. Gao, F.; Pang, H.; Xu, S. P.; Lu, Q. Y. Copper-based nanostructures: Promising antibacterial agents and photocatalysts. Chem. Commun. 2009, 3571–3573.

    Google Scholar 

  22. No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65–72.

    Article  Google Scholar 

  23. Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63.

    Article  Google Scholar 

  24. Kong, H.; Song, J.; Jang, J. One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 2010, 46, 6735–6737.

    Article  Google Scholar 

  25. Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646.

    Article  Google Scholar 

  26. Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Sizedependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028.

    Article  Google Scholar 

  27. Lin, Z. H.; Lee, C. H.; Chang, H. Y.; Chang, H. T. Antibacterial activities of tellurium nanomaterials. Chem.—Asian J. 2012, 7, 930–934.

    Article  Google Scholar 

  28. Zare, B.; Faramarzi, M. A.; Sepehrizadeh, Z.; Shakibaie, M.; Rezaie, S.; Shahverdi, A. R. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater. Res. Bull. 2012, 47, 3719–3725.

    Article  Google Scholar 

  29. Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

    Article  Google Scholar 

  30. Zhang, Z.; Zhang, J.; Zhang, B. L.; Tang, J. L. Musselinspired functionalization of graphene for synthesizing Agpolydopamine-graphene nanosheets as antibacterial materials. Nanoscale 2013, 5, 118–123.

    Article  Google Scholar 

  31. Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 2013, 65, 663–676.

    Article  Google Scholar 

  32. Rai, A.; Prabhune, A.; Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 2010, 20, 6789–6798.

    Article  Google Scholar 

  33. Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

    Article  Google Scholar 

  34. Dobrovolskaia, M. A.; Mcneil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.

    Article  Google Scholar 

  35. Lovering, A. L.; Safadi, S. S.; Strynadka, N. C. J. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 2012, 81, 451–478.

    Article  Google Scholar 

  36. Meroueh, S. O.; Bencze, K. Z.; Hesek, D.; Lee, M.; Fisher, J. F.; Stemmler, T. L.; Mobashery, S. Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. USA 2006, 103, 4404–4409.

    Article  Google Scholar 

  37. Lambert, P. A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 2002, 92, 46S–54S.

    Article  Google Scholar 

  38. Tsezos, M. Biosorption: A mechanistic approach. Adv. Biochem. Eng. Biotechnol. 2014, 141, 173–209.

    Google Scholar 

  39. Zhang, Y. M.; Rock, C. O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008, 6, 222–233.

    Article  Google Scholar 

  40. Veerapandian, M.; Sadhasivam, S.; Choi, J.; Yun, K. Glucosamine functionalized copper nanoparticles: Preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation. Chem. Eng. J. 2012, 209, 558–567.

    Article  Google Scholar 

  41. Wang, H. F.; Gu, L. R.; Lin, Y.; Lu, F. S.; Meziani, M. J.; Luo, P. J.; Wang, W.; Cao, L.; Sun, Y. P. Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 13364–13365.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of China (No. 2013YQ190467), Chinese Academy of Sciences (No. XDA09030305), the National Natural Science Foundation of China (Nos. 81361140345, 51373043, and 21535001) and the Natural Science Foundation of Shandong Province (No. ZR201709250460) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Jiang.

Electronic supplementary material

12274_2018_2143_MOESM1_ESM.pdf

Aminosaccharide–gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, L. & Jiang, X. Aminosaccharide–gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus. Nano Res. 11, 6237–6243 (2018). https://doi.org/10.1007/s12274-018-2143-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2143-4

Keywords

Navigation