Skip to main content
Log in

High-density lipoprotein mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-density lipoprotein (HDL) serves as a natural nanoparticle with compositional and functional heterogeneity and contributes to the maintenance of lipid metabolism and various biological functions. HDL also transports endogenous microRNAs, vitamins, hormones, and proteins through blood and interstitial fluids to various organs. These unique and diverse features of HDL have encouraged its applications for the transport of therapeutics and diagnostic reagents in the last decade. In this review, we describe the heterogeneous characteristics and biological functions of HDL and highlight HDL mimetic approaches, including apolipoprotein mimetic peptides and reconstituted HDL nanoparticles. Given the potential of HDL as a nanocarrier delivering various therapeutic agents, we discuss the current representative studies of HDL mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases and analyze the current challenges and future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahley, R. W.; Innerarity, T. L.; Rall, S. C., Jr.; Weisgraber, K. H. Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294.

    Google Scholar 

  2. Oram, J. F. The cholesterol mobilizing transporter ABCA1 as a new therapeutic target for cardiovascular disease. Trends Cardiovas. Med. 2002, 12, 170–175.

    Article  Google Scholar 

  3. Kontush, A.; Chapman, M. J. Functionally defective highdensity lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 2006, 58, 342–374.

    Article  Google Scholar 

  4. Mulder, W. J. M.; van Leent, M. M. T.; Lameijer, M.; Fisher, E. A.; Fayad, Z. A.; Pérez–Medina, C. High–density lipoprotein nanobiologics for precision medicine. Acc. Chem. Res. 2018, 51, 127–137.

    Article  Google Scholar 

  5. Goldbourt, U.; Yaari, S.; Medalie, J. H. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality: A 21–year follow–up of 8,000 men. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 107–113.

    Article  Google Scholar 

  6. Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi,L.; Chapman, J. M.; Davidson, W. S. Structure of HDL: Particle subclasses and molecular components. High Density Lipoproteins 2015, 224, 3–51.

    Google Scholar 

  7. Deane, R.; Zlokovic, B. V. Role of the blood–brain barrier in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 2007, 4, 191–197.

    Article  Google Scholar 

  8. Musiek, E. S.; Holtzman, D. M. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat. Neurosci. 2015, 18, 800–806.

    Article  Google Scholar 

  9. Rosenblum, W. I. Why Alzheimer trials fail: Removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol. Aging 2014, 35, 969–974.

    Article  Google Scholar 

  10. Vitali, C.; Wellington, C. L.; Calabresi, L. HDL and cholesterol handling in the brain. Cardiovasc. Res. 2014, 103, 405–413.

    Article  Google Scholar 

  11. Chetty, P. S.; Nguyen, D.; Nickel, M.; Lund–Katz, S.; Mayne, L.; Englander, S. W.; Phillips, M. C. Comparison of apoA–I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry. J. Lipid Res. 2013, 54, 1589–1597.

    Article  Google Scholar 

  12. Silva, R. A. G. D.; Huang, R.; Morris, J.; Fang, J. W.; Gracheva, E. O.; Ren, G.; Kontush, A.; Jerome, W. G.; Rye, K. A.; Davidson, W. S. Structure of apolipoprotein A–I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA 2008, 105, 12176–12181.

    Article  Google Scholar 

  13. Franceschini, G. Apolipoprotein function in health and disease: Insights from natural mutations. Eur. J. Clin. Invest. 1996, 26, 733–746.

    Article  Google Scholar 

  14. Li, W. H.; Tanimura, M.; Luo, C. C.; Datta, S.; Chan, L. The apolipoprotein multigene family: Biosynthesis, structure, structure–function relationships, and evolution. J. Lipid Res. 1988, 29, 245–271.

    Google Scholar 

  15. Law, A.; Scott, J. A cross–species comparison of the apolipoprotein–B domain that binds to the LDL receptor. J. Lipid Res. 1990, 31, 1109–1120.

    Google Scholar 

  16. DeKroon, R. M.; Mihovilovic, M.; Goodger, Z. V.; Robinette, J. B.; Sullivan, P. M.; Saunders, A. M.; Strittmatter, W. J. ApoE genotype–specific inhibition of apoptosis. J. Lipid Res. 2003, 44, 1566–1573.

    Article  Google Scholar 

  17. Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 35–45.

    Article  Google Scholar 

  18. Cohn, J. S.; Batal, R.; Tremblay, M.; Jacques, H.; Veilleux, L.; Rodriguez, C.; Mamer, O.; Davignon, J. Plasma turnover of HDL apoC–I, apoC–III, and apoE in humans: In vivo evidence for a link between HDL apoC–III and apoA–I metabolism. J. Lipid Res. 2003, 44, 1976–1983.

    Article  Google Scholar 

  19. Kingwell, B. A.; Chapman, M. J.; Kontush, A.; Miller, N. E. HDL–targeted therapies: Progress, failures and future. Nat. Rev. Drug Discov. 2014, 13, 445–464.

    Article  Google Scholar 

  20. Linton, M. F.; Tao, H.; Linton, E. F.; Yancey, P. G. SR–BI: A multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol. Metab. 2017, 28, 461–472.

    Article  Google Scholar 

  21. Yvan–Charvet, L.; Wang, N.; Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 139–143.

    Article  Google Scholar 

  22. Vaughan, A. M.; Oram, J. F. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol–rich HDL. J. Lipid Res. 2006, 47, 2433–2443.

    Article  Google Scholar 

  23. Rinninger, F.; Heine, M.; Singaraja, R.; Hayden, M.; Brundert, M.; Ramakrishnan, R.; Heeren, J. High density lipoprotein metabolism in low density lipoprotein receptordeficient mice. J. Lipid Res. 2014, 55, 1914–1924.

    Article  Google Scholar 

  24. Galvani, S.; Sanson, M.; Blaho, V. A.; Swendeman, S. L.; Obinata, H.; Conger, H.; Dahlbäck, B.; Kono, M.; Proia, R. L.; Smith, J. D. et al. HDL–bound sphingosine 1–phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 2015, 8, ra79.

    Article  Google Scholar 

  25. Rhainds, D.; Brissette, L. The role of scavenger receptor class B type I (SR–BI) in lipid trafficking: Defining the rules for lipid traders. Int. J. Biochem. Cell Biol. 2004, 36, 39–77.

    Article  Google Scholar 

  26. Tall, A. R.; Yvan–Charvet, L.; Terasaka, N.; Pagler, T.; Wang, N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab. 2008, 7, 365–375.

    Article  Google Scholar 

  27. Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and anti–inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases. N. Am. J. Med. Sci. 2012, 4, 523–532.

    Article  Google Scholar 

  28. Aharoni, S.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis 2013, 228, 353–361.

    Article  Google Scholar 

  29. Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y. et al. Abnormal high–density lipoprotein induces endothelial dysfunction via activation of Toll–like receptor–2. Immunity 2013, 38, 754–768.

    Article  Google Scholar 

  30. Han, C. Y.; Tang, C. R.; Guevara, M. E.; Wei, H.; Wietecha, T.; Shao, B. H.; Subramanian, S.; Omer, M.; Wang, S. R.; O’Brien, K. D. et al. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Invest. 2016, 126, 266–281.

    Article  Google Scholar 

  31. Röhrl, C.; Stangl, H. HDL endocytosis and resecretion. Biochim. Biophys. Acta 2013, 1831, 1626–1633.

    Article  Google Scholar 

  32. Kowal, R. C.; Herz, J.; Goldstein, J. L.; Esser, V.; Brown, M. S. Low density lipoprotein receptor–related protein mediates uptake of cholesteryl esters derived from apoprotein E–enriched lipoproteins. Proc. Natl. Acad. Sci. USA 1989, 86, 5810–5814.

    Article  Google Scholar 

  33. Mooberry, L. K.; Sabnis, N. A.; Panchoo, M.; Nagarajan, B.; Lacko, A. G. Targeting the SR–B1 receptor as a gateway for cancer therapy and imaging. Front. Pharmacol. 2016, 7, 466.

    Article  Google Scholar 

  34. Rodrigueza, W. V.; Thuahnai, S. T.; Temel, R. E.; Lund–Katz, S.; Phillips, M. C.; Williams, D. L. Mechanism of scavenger receptor class B type I–mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J. Biol. Chem. 1999, 274, 20344–20350.

    Article  Google Scholar 

  35. Shahzad, M. M. K.; Mangala, L. S.; Han, H. D.; Lu, C. H.; Bottsford–Miller, J.; Nishimura, M.; Mora, E. M.; Lee, J. W.; Stone, R. L.; Pecot, C. V. et al. Targeted delivery of small interfering RNA using reconstituted high–density lipoprotein nanoparticles. Neoplasia 2011, 13, 309–319.

    Article  Google Scholar 

  36. Zheng, Y.; Liu, Y. Y.; Jin, H. L.; Pan, S. T.; Qian, Y.; Huang, C.; Zeng, Y. X.; Luo, Q. M.; Zeng, M. S.; Zhang, Z. H. Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL–mimetic nanoparticles. Theranostics 2013, 3, 477–486.

    Article  Google Scholar 

  37. Zhang, Z. H.; Chen, J.; Ding, L. L.; Jin, H. L.; Lovell, J. F.; Corbin, I. R.; Cao, W. G.; Lo, P. C.; Yang, M.; Tsao, M. S. et al. HDL–mimicking peptide–lipid nanoparticles with improved tumor targeting. Small 2010, 6, 430–437.

    Article  Google Scholar 

  38. Chen, W.; Jarzyna, P. A.; van Tilborg, G. A. F.; Nguyen, V. A.; Cormode, D. P.; Klink, A.; Griffioen, A. W.; Randolph, G. J.; Fisher, E. A.; Mulder, W. J. M. et al. RGD peptide functionalized and reconstituted high–density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J. 2010, 24, 1689–1699.

    Article  Google Scholar 

  39. Molino, Y.; David, M.; Varini, K.; Jabes, F.; Gaudin, N.; Fortoul, A.; Bakloul, K.; Masse, M.; Bernard, A.; Drobecq, L. et al. Use of LDL receptor–targeting peptide vectors for in vitro and in vivo cargo transport across the blood–brain barrier. FASEB J. 2017, 31, 1807–1827.

    Article  Google Scholar 

  40. Blaho, V. A.; Galvani, S.; Engelbrecht, E.; Liu, C.; Swendeman, S. L.; Kono, M.; Proia, R. L.; Steinman, L.; Han, M. H.; Hla, T. HDL–bound sphingosine–1–phosphate restrains lymphopoiesis and neuroinflammation. Nature 2015, 523, 342–346.

    Article  Google Scholar 

  41. Hatch, F. T.; Lees, R. S. Practical methods for plasma lipoprotein analysis. Adv. Lipid Res. 1968, 6, 1–68.

    Article  Google Scholar 

  42. Havel, R. J.; Eder, H. A.; Bragdon, J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 1955, 34, 1345–1353.

    Article  Google Scholar 

  43. Patsch, J. R.; Sailer, S.; Kostner, G.; Sandhofer, F.; Holasek, A.; Braunsteiner, H. Separation of the main lipoprotein density classes from human plasma by rate–zonal ultracentrifugation. J. Lipid Res. 1974, 15, 356–366.

    Google Scholar 

  44. McVicar, J. P.; Kunitake, S. T.; Hamilton, R. L.; Kane, J. P. Characteristics of human lipoproteins isolated by selectedaffinity immunosorption of apolipoprotein A–I. Proc. Natl. Acad. Sci. USA 1984, 81, 1356–1360.

    Article  Google Scholar 

  45. Okazaki, M.; Hara, I. Analysis of cholesterol in high density lipoprotein subfractions by high performance liquid chromatography. J. Biochem. 1980, 88, 1215–1218.

    Article  Google Scholar 

  46. Lerch, P. G.; Förtsch, V.; Hodler, G.; Bolli, R. Production and characterization of a reconstituted high density lipoprotein for therapeutic applications. Vox Sang. 1996, 71, 155–164.

    Article  Google Scholar 

  47. Bonomo, E. A.; Swaney, J. B. A rapid method for the synthesis of protein–lipid complexes using adsorption chromatography. J. Lipid Res. 1988, 29, 380–384.

    Google Scholar 

  48. Foit, L.; Giles, F. J.; Gordon, L. I.; Thaxton, C. S. Synthetic high–density lipoprotein–like nanoparticles for cancer therapy. Expert Rev. Anticancer Ther. 2015, 15, 27–34.

    Article  Google Scholar 

  49. Ganzetti, G. S.; Busnelli, M.; Parolini, C.; Manzini, S.; Dellera, F.; Sirtori, C. R.; Chiesa, G. Apoa–I depletion in chow–fed apoeko mice severely worsens coronary atherosclerosis development. Atherosclerosis 2016, 252, e104.

    Article  Google Scholar 

  50. Van Lenten, B. J.; Wagner, A. C.; Anantharamaiah, G. M.; Navab, M.; Reddy, S. T.; Buga, G. M.; Fogelman, A. M. Apolipoprotein A–I mimetic peptides. Curr. Atheroscler. Rep. 2009, 11, 52–57.

    Article  Google Scholar 

  51. Sviridov, D.; Remaley, A. T. High–density lipoprotein mimetics: Promises and challenges. Biochem. J. 2015, 472, 249–259.

    Article  Google Scholar 

  52. Marrache, S.; Dhar, S. Biodegradable synthetic high–density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 2013, 110, 9445–9450.

    Article  Google Scholar 

  53. Zhang, Z. H.; Cao, W. G.; Jin, H. L.; Lovell, J. F.; Yang, M.; Ding, L. L.; Chen, J.; Corbin, I.; Luo, Q. M.; Zheng, G. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew. Chem., Int. Ed. 2009, 48, 9171–9175.

    Article  Google Scholar 

  54. Qin, S.; Kamanna, V. S.; Lai, J. H.; Liu, T.; Ganji, S. H.; Zhang, L.; Bachovchin, W. W.; Kashyap, M. L. Reverse D4F, an apolipoprotein–AI mimetic peptide, inhibits atherosclerosis in ApoE–null mice. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 334–343.

    Article  Google Scholar 

  55. Park, H. J.; Kuai, R.; Jeon, E. J.; Seo, Y.; Jung, Y.; Moon, J. J.; Schwendeman, A.; Cho, S. W. High–density lipoproteinmimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials 2018, 161, 69–80.

    Article  Google Scholar 

  56. Amar, M. J. A.; D’Souza, W.; Turner, S.; Demosky, S.; Sviridov, D.; Stonik, J.; Luchoomun, J.; Voogt, J.; Hellerstein, M.; Sviridov, D. et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J. Pharmacol. Exp. Ther. 2010, 334, 634–641.

    Article  Google Scholar 

  57. Sviridov, D. O.; Andrianov, A. M.; Anishchenko, I. V.; Stonik, J. A.; Amar, M. J. A.; Turner, S.; Remaley, A. T. Hydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter. J. Pharmacol. Exp. Ther. 2013, 344, 50–58.

    Article  Google Scholar 

  58. Datta, G.; White, C. R.; Dashti, N.; Chaddha, M.; Palgunachari, M. N.; Gupta, H.; Handattu, S. P.; Garber, D. W.; Anantharamaiah, G. M. Anti–inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac–hE18ANH2. Atherosclerosis 2010, 208, 134–141.

    Article  Google Scholar 

  59. Miles, J.; Khan, M.; Painchaud, C.; Lalwani, N.; Drake, S.; Dasseux, J. L. Single–dose tolerability, pharmacokinetics, and cholesterol mobilization in HDL–C fraction following intravenous administration of ETC–642, a 22–mer ApoA–I analogue and phospholipids complex, in atherosclerosis patients. Arterioscler. Thromb. Vasc. Biol. 2004, 24, e19.

    Google Scholar 

  60. Di Bartolo, B. A.; Nicholls, S. J.; Bao, S. S.; Rye, K. A.; Heather, A. K.; Barter, P. J.; Bursill, C. The apolipoprotein A–I mimetic peptide ETC–642 exhibits anti–inflammatory properties that are comparable to high density lipoproteins. Atherosclerosis 2011, 217, 395–400.

    Article  Google Scholar 

  61. Sethi, A. A.; Amar, M.; Shamburek, R. D.; Remaley, A. T. Apolipoprotein AI mimetic peptides: Possible new agents for the treatment of atherosclerosis. Curr. Opin. Investig. Drugs 2007, 8, 201–212.

    Google Scholar 

  62. Datta, G.; Chaddha, M.; Garber, D. W.; Chung, B. L.; Tytler, E. M.; Dashti, N.; Bradley, W. A.; Gianturco, S. H.; Anantharamaiah, G. M. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry 2000, 39, 213–220.

    Article  Google Scholar 

  63. Scanu, A. Binding of human serum high density lipoprotein apoprotein with aqueous dispersions of phospholipids. J. Biol. Chem. 1967, 242, 711–719.

    Google Scholar 

  64. Scanu, A.; Cump, E.; Toth, J.; Koga, S.; Stiller, E.; Albers, L. Degradation and reassembly of a human serum high–density lipoprotein. Evidence for differences in lipid affinity among three classes of polypeptide chains. Biochemistry 1970, 9, 1327–1335.

    Google Scholar 

  65. van den Elzen, P.; Garg, S.; León, L.; Brigl, M.; Leadbetter, E. A.; Gumperz, J. E.; Dascher, C. C.; Cheng, T. Y.; Sacks, F. M.; Illarionov, P. A. et al. Apolipoprotein–mediated pathways of lipid antigen presentation. Nature 2005, 437, 906–910.

    Article  Google Scholar 

  66. Tall, A. R. Studies on the transfer of phosphatidylcholine from unilamellar vesicles into plasma high density lipoproteins in the rat. J. Lipid Res. 1980, 21, 354–363.

    Google Scholar 

  67. Kim, Y.; Fay, F.; Cormode, D. P.; Sanchez–Gaytan, B. L.; Tang, J.; Hennessy, E. J.; Ma, M. M.; Moore, K.; Farokhzad, O. C.; Fisher, E. A. et al. Single step reconstitution of multifunctional high–density lipoprotein–derived nanomaterials using microfluidics. ACS Nano 2013, 7, 9975–9983.

    Article  Google Scholar 

  68. Toth, M. J.; Kim, T.; Kim, Y. Robust manufacturing of lipidpolymer nanoparticles through feedback control of parallelized swirling microvortices. Lab Chip 2017, 17, 2805–2813.

    Article  Google Scholar 

  69. Ahn, J.; Sei, Y. J.; Jeon, N. L.; Kim, Y. Probing the effect of bioinspired nanomaterials on angiogenic sprouting with a microengineered vascular system. IEEE Trans. Nanotechnol. 2018, 17, 393–397.

    Article  Google Scholar 

  70. Sei, Y. J.; Ahn, J.; Kim, T.; Shin, E.; Santiago–Lopez, A. J.; Jang, S. S.; Jeon, N. L.; Jang, Y. C.; Kim, Y. Detecting the functional complexities between high–density lipoprotein mimetics. Biomaterials 2018, 170, 58–69.

    Article  Google Scholar 

  71. Kim, Y. T.; Chung, B. L.; Ma, M. M.; Mulder, W. J. M.; Fayad, Z. A.; Farokhzad, O. C.; Langer, R. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012, 12, 3587–3591.

    Article  Google Scholar 

  72. Sanchez–Gaytan, B. L.; Fay, F.; Lobatto, M. E.; Tang, J.; Ouimet, M.; Kim, Y.; van der Staay, S. E. M.; van Rijs, S. M.; Priem, B.; Zhang, L. F. et al. HDL–mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug. Chem. 2015, 26, 443–451.

    Article  Google Scholar 

  73. Benjamin, E. J.; Virani, S. S.; Callaway, C. W.; Chang, A. R.; Cheng, S. S.; Chiuve, S. E.; Cushman, M.; Delling, F. N.; Deo, R.; de Ferranti, S. D. et al. Heart disease and stroke statistics—2018 update: A report from the American heart association. Circulation 2018, 137, e67–e492.

    Article  Google Scholar 

  74. Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Article  Google Scholar 

  75. Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

    Article  Google Scholar 

  76. Nguyen, M. M.; Carlini, A. S.; Chien, M. P.; Sonnenberg, S.; Luo, C.; Braden, R. L.; Osborn, K. G.; Li, Y. W.; Gianneschi, N. C.; Christman, K. L. Enzyme–responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 2015, 27, 5547–5552.

    Article  Google Scholar 

  77. Korin, N.; Kanapathipillai, M.; Matthews, B. D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S. A.; Bhatta, D. et al. Shear–activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012, 337, 738–742.

    Article  Google Scholar 

  78. Michael Gibson, C.; Korjian, S.; Tricoci, P.; Daaboul, Y.; Yee, M.; Jain, P.; Alexander, J. H.; Steg, P. G.; Lincoff, A. M.; Kastelein, J. J. P. et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma–derived apolipoprotein A–I, after acute myocardial infarction: The AEGIS–I trial (ApoA–I event reducing in ischemic syndromes I). Circulation 2016, 134, 1918–1930.

    Article  Google Scholar 

  79. Hovingh, G. K.; Smits, L. P.; Stefanutti, C.; Soran, H.; Kwok, S.; de Graaf, J.; Gaudet, D.; Keyserling, C. H.; Klepp, H.; Frick, J. et al. The effect of an apolipoprotein A–I–containing high–density lipoprotein–mimetic particle (CER–001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study. Am. Heart. J. 2015, 169, 736–742.e1.

    Article  Google Scholar 

  80. Tabet, F.; Vickers, K. C.; Cuesta Torres, L. F.; Wiese, C. B.; Shoucri, B. M.; Lambert, G.; Catherinet, C.; Prado–Lourenco, L.; Levin, M. G.; Thacker, S. et al. HDL–transferred microRNA–223 regulates ICAM–1 expression in endothelial cells. Nat. Commun. 2014, 5, 3292.

    Article  Google Scholar 

  81. Duivenvoorden, R.; Tang, J.; Cormode, D. P.; Mieszawska, A. J.; Izquierdo–Garcia, D.; Ozcan, C.; Otten, M. J.; Zaidi, N.; Lobatto, M. E.; van Rijs, S. M. et al. A statin–loaded reconstituted high–density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat. Commun. 2014, 5, 3065.

    Article  Google Scholar 

  82. Argraves, K. M.; Gazzolo, P. J.; Groh, E. M.; Wilkerson, B. A.; Matsuura, B. S.; Twal, W. O.; Hammad, S. M.; Argraves, W. S. High density lipoprotein–associated sphingosine 1–phosphate promotes endothelial barrier function. J. Biol. Chem. 2008, 283, 25074–25081.

    Article  Google Scholar 

  83. Nanjee, M. N.; Doran, J. E.; Lerch, P. G.; Miller, N. E. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 979–989.

    Article  Google Scholar 

  84. Tardif, J. C.; Grégoire, J.; L’Allier, P. L.; Ibrahim, R.; Lespérance, J.; Heinonen, T. M.; Kouz, S.; Berry, C.; Basser, R.; Lavoie, M. A. et al. Effects of reconstituted high–density lipoprotein infusions on coronary atherosclerosis: A randomized controlled trial. JAMA 2007, 297, 1675–1682.

    Article  Google Scholar 

  85. Nasr, H.; Torsney, E.; Poston, R. N.; Hayes, L.; Gaze, D. C.; Basser, R.; Thompson, M. M.; Loftus, I. M.; Cockerill, G. W. Investigating the effect of a single infusion of reconstituted high–density lipoprotein in patients with symptomatic carotid plaques. Ann. Vasc. Surg. 2015, 29, 1380–1391.

    Article  Google Scholar 

  86. Easton, R.; Gille, A.; D’Andrea, D.; Davis, R.; Wright, S. D.; Shear, C. A multiple ascending dose study of CSL112, an infused formulation of ApoA–I. J. Clin. Pharmacol. 2014, 54, 301–310.

    Article  Google Scholar 

  87. Krause, B. R.; Remaley, A. T. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr. Opin. Lipidol. 2013, 24, 480–486.

    Article  Google Scholar 

  88. Tricoci, P.; D’Andrea, D. M.; Gurbel, P. A.; Yao, Z. L.; Cuchel, M.; Winston, B.; Schott, R.; Weiss, R.; Blazing, M. A.; Cannon, L. et al. Infusion of reconstituted high–density lipoprotein, CSL112, in patients with atherosclerosis: Safety and pharmacokinetic results from a phase 2a randomized clinical trial. J. Am. Heart Assoc. 2015, 4, e002171.

    Article  Google Scholar 

  89. Goffinet, M.; Tardy, C.; Bluteau, A.; Boubekeur, N.; Baron, R.; Keyserling, C.; Barbaras, R.; Lalwani, N.; Dasseux, J. L. Anti–atherosclerotic effect of CER–001, an engineered HDL–mimetic, in the high–fat diet–fed LDLr knockout mice. Circulation 2012, 126, A18667.

    Google Scholar 

  90. Tardif, J. C.; Ballantyne, C. M.; Barter, P.; Dasseux, J. L.; Fayad, Z. A.; Guertin, M. C.; Kastelein, J. J. P.; Keyserling, C.; Klepp, H.; Koenig, W. et al. Effects of the high–density lipoprotein mimetic agent CER–001 on coronary atherosclerosis in patients with acute coronary syndromes: A randomized trial. Eur. Heart J. 2014, 35, 3277–3286.

    Article  Google Scholar 

  91. Keyserling, C. H.; Hunt, T. L.; Klepp, H. M.; Scott, R. A.; Barbaras, R.; Schwendeman, A.; Lalwani, N.; Dasseux, J. L. CER–001, a synthetic HDL–mimetic, safely mobilizes cholesterol in healthy dyslipidemic volunteers. Circulation 2011, 124, A15525.

    Google Scholar 

  92. Vickers, K. C.; Palmisano, B. T.; Shoucri, B. M.; Shamburek, R. D.; Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high–density lipoproteins. Nat. Cell. Biol. 2011, 13, 423–433.

    Article  Google Scholar 

  93. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017, 13, 325–373.

  94. Stukas, S.; Robert, J.; Wellington, C. L. High–density lipoproteins and cerebrovascular integrity in Alzheimer’s disease. Cell Metab. 2014, 19, 574–591.

    Article  Google Scholar 

  95. Song, Q. X.; Huang, M.; Yao, L.; Wang, X. L.; Gu, X.; Chen, J.; Chen, J.; Huang, J. L.; Hu, Q. Y.; Kang, T. et al. Lipoprotein–based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid–beta. ACS Nano 2014, 8, 2345–2359.

    Article  Google Scholar 

  96. Huang, M.; Hu, M.; Song, Q. X.; Song, H. H.; Huang, J. L.; Gu, X.; Wang, X. L.; Chen, J.; Kang, T.; Feng, X. Y. et al. GM1–modified lipoprotein–like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer’s disease. ACS Nano 2015, 9, 10801–10816.

    Article  Google Scholar 

  97. Song, Q. X.; Song, H. H.; Xu, J. R.; Huang, J. L.; Hu, M.; Gu, X.; Chen, J.; Zheng, G.; Chen, H. Z.; Gao, X. L. Biomimetic ApoE–reconstituted high density lipoprotein nanocarrier for blood–brain barrier penetration and amyloid beta–targeting drug delivery. Mol. Pharm. 2016, 13, 3976–3987.

    Article  Google Scholar 

  98. Redondo, S.; Martínez–González, J.; Urraca, C.; Tejerina, T. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis. 2011, 10, 175.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Director’s New Innovator Award (No. 1DP2HL142050, Y. K.) and the American Heart Association Scientist Development (No. 15SDG25080314, Y. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongTae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.I., Park, HJ., Yom, J. et al. High-density lipoprotein mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases. Nano Res. 11, 5130–5143 (2018). https://doi.org/10.1007/s12274-018-2101-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2101-1

Keywords

Navigation