Nano Research

, Volume 11, Issue 10, pp 5028–5048 | Cite as

In situ polymerization on biomacromolecules for nanomedicines

  • Xiangqian Jia
  • Luyao Wang
  • Juanjuan Du
Review Article


Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional “grafting to” polymer–biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed.


in situ polymerization nanomedicine controlled radical polymerization nanocapsules protein therapy gene therapy 



This work was supported by The National Key Research and Development Program of China (No. 2017YFA0207900) and The Global Talents Recruitment Program of China.


  1. [1]
    Kinch, M. S. An overview of FDA–approved biologics medicines. Drug Discov. Today 2015, 20, 393–398.CrossRefGoogle Scholar
  2. [2]
    Moorkens, E.; Meuwissen, N.; Huys, I.; Declerck, P.; Vulto, A. G.; Simoens, S. The market of biopharmaceutical medicines: A snapshot of a diverse industrial landscape. Front. Pharmacol. 2017, 8, 314.CrossRefGoogle Scholar
  3. [3]
    Miller, K. L.; Lanthier, M. Innovation in biologic new molecular entities: 1986–2014. Nat. Rev. Drug Discov. 2015, 14, 83–83.CrossRefGoogle Scholar
  4. [4]
    Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.CrossRefGoogle Scholar
  5. [5]
    Carter, P. J. Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res. 2011, 317, 1261–1269.CrossRefGoogle Scholar
  6. [6]
    Morrison, C. Fresh from the biotech pipeline–2017. Nat. Biotechnol. 2018, 36, 131–136.Google Scholar
  7. [7]
    Smalley, E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 2017, 35, 998–999.CrossRefGoogle Scholar
  8. [8]
    Yin, H.; Kauffman, K. J.; Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 2017, 16, 387–399.CrossRefGoogle Scholar
  9. [9]
    Cornu, T. I.; Mussolino, C.; Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017, 23, 415–423.CrossRefGoogle Scholar
  10. [10]
    Vazquez, E.; Corchero, J. L.; Villaverde, A. Post–production protein stability: Trouble beyond the cell factory. Microb. Cell Fact. 2011, 10, 60.CrossRefGoogle Scholar
  11. [11]
    Tsui, N. B. Y.; Ng, E. K. O.; Lo, Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 2002, 48, 1647–1653.Google Scholar
  12. [12]
    Morales, J. O.; Fathe, K. R.; Brunaugh, A.; Ferrati, S.; Li, S.; Montenegro–Nicolini, M.; Mousavikhamene, Z.; McConville, J. T.; Prausnitz, M. R.; Smyth, H. D. C. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017, 19, 652–668.CrossRefGoogle Scholar
  13. [13]
    Ray, M.; Lee, Y. W.; SCaletti, F.; Yu, R. J.; Rotello, V. M. Intracellular delivery of proteins by nanocarriers. Nanomedicine 2017, 12, 941–952.CrossRefGoogle Scholar
  14. [14]
    Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40, 3638–3655.CrossRefGoogle Scholar
  15. [15]
    Du, J. J.; Jin, J.; Yan, M.; Lu, Y. F. Synthetic nanocarriers for intracellular protein delivery. Curr. Drug Metab. 2012, 13, 82–92.CrossRefGoogle Scholar
  16. [16]
    Kontermann, R. E. Half–life extended biotherapeutics. Expert Opin. Biol. Ther. 2016, 16, 903–915.CrossRefGoogle Scholar
  17. [17]
    Yanover, C.; Jain, N.; Pierce, G.; Howard, T. E.; Sauna, Z. E. Pharmacogenetics and the immunogenicity of protein therapeutics. Nat. Biotechnol. 2011, 29, 870–873.CrossRefGoogle Scholar
  18. [18]
    Mingozzi, F.; High, K. A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013, 122, 23–36.CrossRefGoogle Scholar
  19. [19]
    Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem., Int. Ed. 2006, 45, 1198–1215.CrossRefGoogle Scholar
  20. [20]
    Wu, Y. Z.; Ng, D. Y. W.; Kuan, S. L.; Weil, T. Protein–polymer therapeutics: A macromolecular perspective. Biomater. Sci. 2015, 3, 214–230.CrossRefGoogle Scholar
  21. [21]
    Zhang, P.; Wagner, E. History of polymeric gene delivery systems. Top. Curr. Chem. 2017, 375, 26.CrossRefGoogle Scholar
  22. [22]
    Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.CrossRefGoogle Scholar
  23. [23]
    Turecek, P. L.; Bossard, M. J.; Schoetens, F.; Ivens, I. A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016, 105, 460–475.CrossRefGoogle Scholar
  24. [24]
    Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.CrossRefGoogle Scholar
  25. [25]
    Pelegri–O'Day, E. M.; Lin, E. W.; Maynard, H. D. Therapeutic protein–polymer conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014, 136, 14323–14332.CrossRefGoogle Scholar
  26. [26]
    Qi, Y. Z.; Chilkoti, A. Growing polymers from peptides and proteins: A biomedical perspective. Polym. Chem. 2014, 5, 266–276.CrossRefGoogle Scholar
  27. [27]
    Ye, Y. Q.; Yu, J. C.; Gu, Z. Versatile protein nanogels prepared by in situ polymerization. Macromol. Chem. Phys. 2016, 217, 333–343.CrossRefGoogle Scholar
  28. [28]
    Bontempo, D.; Maynard, H. D. Streptavidin as a macroinitiator for polymerization: In situ protein–polymer conjugate formation. J. Am. Chem. Soc. 2005, 127, 6508–6509.CrossRefGoogle Scholar
  29. [29]
    Heredia, K. L.; Bontempo, D.; Ly, T.; Byers, J. T.; Halstenberg, S.; Maynard, H. D. In situ preparation of protein—“Smart” polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 2005, 127, 16955–16960.CrossRefGoogle Scholar
  30. [30]
    Lele, B. S.; Murata, H.; Matyjaszewski, K.; Russell, A. J. Synthesis of uniform protein–polymer conjugates. Biomacromolecules 2005, 6, 3380–3387.CrossRefGoogle Scholar
  31. [31]
    Nicolas, J.; San Miguel, V.; Mantovani, G.; Haddleton, D. M. Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chem. Commun. 2006, 4697–4699.Google Scholar
  32. [32]
    Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.CrossRefGoogle Scholar
  33. [33]
    Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139–4146.CrossRefGoogle Scholar
  34. [34]
    Min, K.; Gao, H. F.; Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825–3830.CrossRefGoogle Scholar
  35. [35]
    Magnusson, J. P.; Bersani, S.; Salmaso, S.; Alexander, C.; Caliceti, P. In situ growth of side–chain PEG polymers from functionalized human growth hormone—A new technique for preparation of enhanced protein–polymer conjugates. Bioconjugate Chem. 2010, 21, 671–678.CrossRefGoogle Scholar
  36. [36]
    Yasayan, G.; Saeed, A. O.; Fernández–Trillo, F.; Allen, S.; Davies, M. C.; Jangher, A.; Paul, A.; Thurecht, K. J.; King, S. M.; Schweins, R. et al. Responsive hybrid block co–polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polym. Chem. 2011, 2, 1567–1578.CrossRefGoogle Scholar
  37. [37]
    Zhu, B. B.; Lu, D. N.; Ge, J.; Liu, Z. Uniform polymerprotein conjugate by aqueous AGET ATRP using protein as a macroinitiator. Acta Biomater. 2011, 7, 2131–2138.CrossRefGoogle Scholar
  38. [38]
    Averick, S.; Simakova, A.; Park, S.; Konkolewicz, D.; Magenau, A. J. D.; Mehl, R. A.; Matyjaszewski, K. ATRP under biologically relevant conditions: Grafting from a protein. ACS Macro Lett. 2012, 1, 6–10.CrossRefGoogle Scholar
  39. [39]
    Mansfield, K. M.; Maynard, H. D. Site–specific insulintrehalose glycopolymer conjugate by grafting from strategy improves bioactivity. ACS Macro Lett. 2018, 7, 324–329.CrossRefGoogle Scholar
  40. [40]
    Averick, S. E.; Bazewicz, C. G.; Woodman, B. F.; Simakova, A.; Mehl, R. A.; Matyjaszewski, K. Protein–polymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. Eur. Polym. J. 2013, 49, 2919–2924.CrossRefGoogle Scholar
  41. [41]
    Cohen–Karni, D.; Kovaliov, M.; Ramelot, T.; Konkolewicz, D.; Graner, S.; Averick, S. Grafting challenging monomersfrom proteins using aqueous ICAR ATRP under bio–relevant conditions. Polym. Chem. 2017, 8, 3992–3998.CrossRefGoogle Scholar
  42. [42]
    Zhang, Q.; Li, M. X.; Zhu, C. Y.; Nurumbetov, G.; Li, Z. D.; Wilson, P.; Kempe, K.; Haddleton, D. M. Well–defined protein/peptide–polymer conjugates by aqueous Cu–LRP: Synthesis and controlled self–assembly. J. Am. Chem. Soc. 2015, 137, 9344–9353.CrossRefGoogle Scholar
  43. [43]
    Semsarilar, M.; Perrier, S. “Green” reversible additionfragmentation chain–transfer (RAFT) polymerization. Nat. Chem. 2010, 2, 811–820.CrossRefGoogle Scholar
  44. [44]
    Liu, J. Q.; Bulmus, V.; Herlambang, D. L.; Barner–Kowollik, C.; Stenzel, M. H.; Davis, T. P. In situ formation of proteinpolymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem., Int. Ed. 2007, 46, 3099–3103.CrossRefGoogle Scholar
  45. [45]
    Boyer, C.; Bulmus, V.; Liu, J. Q.; Davis, T. P.; Stenzel, M. H.; Barner–Kowollik, C. Well–defined protein–polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 2007, 129, 7145–7154.CrossRefGoogle Scholar
  46. [46]
    Liu, J. Q.; Liu, H. Y.; Bulmus, V.; Tao, L.; Boyer, C.; Davis, T. P. A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. J. Polym. Sci. Pol. Chem. 2010, 48, 1399–1405.CrossRefGoogle Scholar
  47. [47]
    De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperatureregulated activity of responsive polymer–protein conjugates prepared by grafting–from via RAFT polymerization. J. Am. Chem. Soc. 2008, 130, 11288–11289.CrossRefGoogle Scholar
  48. [48]
    Li, H. M.; Li, M.; Yu, X.; Bapat, A. P.; Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2011, 2, 1531–1535.CrossRefGoogle Scholar
  49. [49]
    Li, M.; Li, H. M.; De, P.; Sumerlin, B. S. Thermoresponsive block copolymer–protein conjugates prepared by graftingfrom via RAFT polymerization. Macromol. Rapid Commun. 2011, 32, 354–359.CrossRefGoogle Scholar
  50. [50]
    Li, X.; Wang, L.; Chen, G. J.; Haddleton, D. M.; Chen, H. Visible light induced fast synthesis of protein–polymer conjugates: Controllable polymerization and protein activity. Chem. Commun. 2014, 50, 6506–6508.CrossRefGoogle Scholar
  51. [51]
    Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. Grafting–from proteins using metal–free PET–RAFT polymerizations under mild visible–light irradiation. ACS Macro Lett. 2017, 6, 452–457.CrossRefGoogle Scholar
  52. [52]
    Kovaliov, M.; Allegrezza, M. L.; Richter, B.; Konkolewicz, D.; Averick, S. Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting–from strategy. Polymer 2018, 137, 338–345.CrossRefGoogle Scholar
  53. [53]
    Isarov, S. A.; Pokorski, J. K. Protein ROMP: Aqueous graft–from ring–opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969–973.CrossRefGoogle Scholar
  54. [54]
    Fishman, J. M.; Kiessling, L. L. Synthesis of functionalizable and degradable polymers by ring–opening metathesis polymerization. Angew. Chem., Int. Ed. 2013, 52, 5061–5064.CrossRefGoogle Scholar
  55. [55]
    Gao, W. P.; Liu, W. G.; Mackay, J. A.; Zalutsky, M. R.; Toone, E. J.; Chilkoti, A. In situ growth of a stoichiometric PEG–like conjugate at a protein’s N–terminus with significantly improved pharmacokinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 15231–15236.CrossRefGoogle Scholar
  56. [56]
    Kim, C. H.; Axup, J. Y.; Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 2013, 17, 412–419.CrossRefGoogle Scholar
  57. [57]
    Liu, C. C.; Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413–444.CrossRefGoogle Scholar
  58. [58]
    Peeler, J. C.; Woodman, B. F.; Averick, S.; Miyake–Stoner, S. J.; Stokes, A. L.; Hess, K. R.; Matyjaszewski, K.; Mehl, R. A. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 2010, 132, 13575–13577.CrossRefGoogle Scholar
  59. [59]
    Gao, W. P.; Liu, W. G.; Christensen, T.; Zalutsky, M. R.; Chilkoti, A. In situ growth of a PEG–like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA 2010, 107, 16432–16437.CrossRefGoogle Scholar
  60. [60]
    Qi, Y. Z.; Amiram, M.; Gao, W. P.; McCafferty, D. G.; Chilkoti, A. Sortase–catalyzed initiator attachment enables high yield growth of a stealth polymer from the C terminus of a protein. Macromol. Rapid Commun. 2013, 34, 1256–1260.CrossRefGoogle Scholar
  61. [61]
    Pokorski, J. K.; Breitenkamp, K.; Liepold, L. O.; Qazi, S.; Finn, M. G. Functional virus–based polymer–protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 2011, 133, 9242–9245.CrossRefGoogle Scholar
  62. [62]
    Lou, X. H.; He, L. DNA–accelerated atom transfer radical polymerization on a gold surface. Langmuir 2006, 22, 2640–2646.CrossRefGoogle Scholar
  63. [63]
    Qian, H.; He, L. Surface–Initiated activators generated by electron transfer for atom transfer radical polymerization in detection of DNA point mutation. Anal. Chem. 2009, 81, 4536–4542.CrossRefGoogle Scholar
  64. [64]
    Lou, X. H.; Lewis, M. S.; Gorman, C. B.; He, L. Detection of DNA point mutation by atom transfer radical polymerization. Anal. Chem. 2005, 77, 4698–4705.CrossRefGoogle Scholar
  65. [65]
    Lou, X. H.; Wang, C. Y.; He, L. Core–shell Au nanoparticle formation with DNA–polymer hybrid coatings using aqueous ATRP. Biomacromolecules 2007, 8, 1385–1390.CrossRefGoogle Scholar
  66. [66]
    Averick, S. E.; Dey, S. K.; Grahacharya, D.; Matyjaszewski, K.; Das, S. R. Solid–phase incorporation of an ATRP initiator for polymer–DNA biohybrids. Angew. Chem., Int. Ed. 2014, 53, 2739–2744.CrossRefGoogle Scholar
  67. [67]
    Pan, X. C.; Lathwal, S.; Mack, S.; Yan, J. J.; Das, S. R.; Matyjaszewski, K. Automated synthesis of well–defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer. Angew. Chem., Int. Ed. 2017, 56, 2740–2743.CrossRefGoogle Scholar
  68. [68]
    Lin, E. W.; Maynard, H. D. Grafting from small interfering ribonucleic acid (siRNA) as an alternative synthesis route to siRNA–polymer conjugates. Macromolecules 2015, 48, 5640–5647.CrossRefGoogle Scholar
  69. [69]
    Tokura, Y.; Jiang, Y. Y.; Welle, A.; Stenzel, M. H.; Krzemien, K. M.; Michaelis, J.; Berger, R.; Barner–Kowollik, C.; Wu, Y. Z.; Weil, T. Bottom–up fabrication of nanopatterned polymers on DNA origami by in situ atom–transfer radical polymerization. Angew. Chem., Int. Ed. 2016, 55, 5692–5697.CrossRefGoogle Scholar
  70. [70]
    Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. K. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 2006, 128, 11008–11009.CrossRefGoogle Scholar
  71. [71]
    Yan, M.; Liu, Z. X.; Lu, D. N.; Liu, Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 2007, 8, 560–565.CrossRefGoogle Scholar
  72. [72]
    Ge, J.; Lu, D. A.; Wang, J.; Liu, Z. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 2009, 10, 1612–1618.CrossRefGoogle Scholar
  73. [73]
    Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L. L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on singleprotein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.CrossRefGoogle Scholar
  74. [74]
    Ge, J.; Lu, D. N.; Wang, J.; Yan, M.; Lu, Y. F.; Liu, Z. Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 2008, 112, 14319–14324.CrossRefGoogle Scholar
  75. [75]
    Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.CrossRefGoogle Scholar
  76. [76]
    Biswas, A.; Joo, K. I.; Liu, J.; Zhao, M. X.; Fan, G. P.; Wang, P.; Gu, Z.; Tang, Y. Endoprotease–mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5, 1385–1394.CrossRefGoogle Scholar
  77. [77]
    Wen, J.; Anderson, S. M.; Du, J. J.; Yan, M.; Wang, J.; Shen, M. Q.; Lu, Y. F.; Segura, T. Controlled protein delivery based on enzyme–responsive nanocapsules. Adv. Mater. 2011, 23, 4549–4553.CrossRefGoogle Scholar
  78. [78]
    Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Redox–responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.CrossRefGoogle Scholar
  79. [79]
    Biswas, A.; Liu, Y.; Liu, T. F.; Fan, G. P.; Tang, Y. Polyethylene glycol–based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 2012, 33, 5459–5467.CrossRefGoogle Scholar
  80. [80]
    Yan, M.; Liang, M.; Wen, J.; Liu, Y.; Lu, Y. F.; Chen, I. S. Y. Single siRNA nanocapsules for enhanced RNAi delivery. J. Am. Chem. Soc. 2012, 134, 13542–13545.CrossRefGoogle Scholar
  81. [81]
    Liang, M.; Yan, M.; Lu, Y. F.; Chen, I. S. Y. Retargeting vesicular stomatitis virus glycoprotein pseudotyped lentiviral vectors with enhanced stability by in situ synthesized polymer shell. Hum. Gene Ther. Method. 2013, 24, 11–18.CrossRefGoogle Scholar
  82. [82]
    Zhao, M. X.; Hu, B. L.; Gu, Z.; Joo, K. I.; Wang, P.; Tang, Y. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor–selective protein complex. Nano Today 2013, 8, 11–20.CrossRefGoogle Scholar
  83. [83]
    Zhao, M. X.; Liu, Y. R.; Hsieh, R. S.; Wang, N.; Tai, W. Y.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Clickable protein nanocapsules for targeted delivery of recombinant p53 protein. J. Am. Chem. Soc. 2014, 136, 15319–15325.CrossRefGoogle Scholar
  84. [84]
    Beloqui, A.; Kobitski, A. Y.; Nienhaus, G. U.; Delaittre, G. A simple route to highly active single–enzyme nanogels. Chem. Sci. 2018, 9, 1006–1013.CrossRefGoogle Scholar
  85. [85]
    Du, J. J.; Yu, C. M.; Pan, D. C.; Li, J. M.; Chen, W.; Yan, M.; Segura, T.; Lu, Y. F. Quantum–dot–decorated robust transductable bioluminescent nanocapsules. J. Am. Chem. Soc. 2010, 132, 12780–12781.CrossRefGoogle Scholar
  86. [86]
    Du, J. J.; Jin, J.; Liu, Y.; Li, J.; Tokatlian, T.; Lu, Z. H.; Segura, T.; Yuan, X. B.; Yang, X. J.; Lu, Y. F. Gold–nanocrystalenhanced bioluminescent nanocapsules. ACS Nano 2014, 8, 9964–9969.CrossRefGoogle Scholar
  87. [87]
    Gu, Z.; Biswas, A.; Joo, K. I.; Hu, B. L.; Wang, P.; Tang, Y. Probing protease activity by single–fluorescent–protein nanocapsules. Chem. Commun. 2010, 46, 6467–6469.CrossRefGoogle Scholar
  88. [88]
    Li, J.; Jin, X.; Liu, Y.; Li, F.; Zhang, L. L.; Zhu, X. Y.; Lu, Y. F. Robust enzyme–silica composites made from enzyme nanocapsules. Chem. Commun. 2015, 51, 9628–9631.CrossRefGoogle Scholar
  89. [89]
    Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.CrossRefGoogle Scholar
  90. [90]
    Los, M.; Panigrahi, S.; Rashedi, I.; Mandal, S.; Stetefeld, J.; Essmann, F.; Schulze–Osthoff, K. Apoptin, a tumor–selective killer. Biochim. Biophys. Acta 2009, 1793, 1335–1342.CrossRefGoogle Scholar
  91. [91]
    Weng, D.; Jiang, Z. K.; Jin, J.; Wu, L.; Lu, Y. F. Enhanced structural stability of adenovirus nanocapsule. Prog. Nat. Sci.: Mater. 2014, 24, 171–174.CrossRefGoogle Scholar
  92. [92]
    Liu, C. Y.; Wen, J.; Meng, Y. B.; Zhang, K. L.; Zhu, J. L.; Ren, Y.; Qian, X. M.; Yuan, X. B.; Lu, Y. F.; Kang, C. S. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv. Mater. 2015, 27, 292–297.CrossRefGoogle Scholar
  93. [93]
    Yan, M.; Wen, J.; Liang, M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Modulation of gene expression by polymer nanocapsule delivery of DNA cassettes encoding small RNAs. PLoS One 2015, 10, e0127986.CrossRefGoogle Scholar
  94. [94]
    Averick, S. E.; Magenau, A. J. D.; Simakova, A.; Woodman, B. F.; Seong, A.; Mehl, R. A.; Matyjaszewski, K. Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion. Polym. Chem. 2011, 2, 1476–1478.CrossRefGoogle Scholar
  95. [95]
    Lucon, J.; Qazi, S.; Uchida, M.; Bedwell, G. J.; LaFrance, B.; Prevelige, P. E., Jr.; Douglas, T. Use of the interior cavity of the P22 capsid for site–specific initiation of atom–transfer radical polymerization with high–density cargo loading. Nat. Chem. 2012, 4, 781–788.CrossRefGoogle Scholar
  96. [96]
    Wang, J. T.; Hong, Y. H.; Ji, X. T.; Zhang, M. M.; Liu, L.; Zhao, H. Y. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J. Mater. Chem. B 2016, 4, 4430–4438.CrossRefGoogle Scholar
  97. [97]
    Wei, W.; Du, J. J.; Li, J.; Yan, M.; Zhu, Q.; Jin, X.; Zhu, X. Y.; Hu, Z. M.; Tang, Y.; Lu, Y. F. Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection. Adv. Mater. 2013, 25, 2212–2218.CrossRefGoogle Scholar
  98. [98]
    Xu, G. F.; Xu, Y. H.; Li, A. H.; Chen, T.; Liu, J. Q. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. J. Polym. Sci.: Pol. Chem. 2017, 55, 1289–1293.CrossRefGoogle Scholar
  99. [99]
    Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano–conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.CrossRefGoogle Scholar
  100. [100]
    Hu, J.; Zhao, W. G.; Gao, Y.; Sun, M. M.; Wei, Y.; Deng, H. T.; Gao, W. P. Site–specific in situ growth of a cyclized protein–polymer conjugate with improved stability and tumor retention. Biomaterials 2015, 47, 13–19.CrossRefGoogle Scholar
  101. [101]
    Zhang, P.; Sun, F.; Tsao, C.; Liu, S. J.; Jain, P.; Sinclair, A.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051.CrossRefGoogle Scholar
  102. [102]
    Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031.CrossRefGoogle Scholar
  103. [103]
    Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano–encapsulation with phosphorylcholinebased polymer. Nano Res. 2016, 9, 2424–2432.CrossRefGoogle Scholar
  104. [104]
    Zhang, P.; Jain, P.; Tsao, C.; Sinclair, A.; Sun, F.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release 2016, 230, 73–78.CrossRefGoogle Scholar
  105. [105]
    Zhang, X. P.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Encapsulating therapeutic proteins with polyzwitterions for lower macrophage nonspecific uptake and longer circulation time. ACS Appl. Mater. Interfaces 2017, 9, 7972–7978.CrossRefGoogle Scholar
  106. [106]
    Zhang, X. P.; Xu, D.; Jin, X.; Liu, G.; Liang, S.; Wang, H.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J. Control. Release 2017, 255, 54–61.CrossRefGoogle Scholar
  107. [107]
    Hu, J.; Wang, G. L.; Zhao, W. G.; Liu, X. Y.; Zhang, L. B.; Gao, W. P. Site–specific in situ growth of an interferonpolymer conjugate that outperforms PEGASYS in cancer therapy. Biomaterials 2016, 96, 84–92.CrossRefGoogle Scholar
  108. [108]
    Hu, J.; Wang, G. L.; Zhao, W. G.; Gao, W. P. In situ growth of a C–terminal interferon–alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy. J. Control. Release 2016, 237, 71–77.CrossRefGoogle Scholar
  109. [109]
    Zhang, J. J.; Lei, Y. G.; Dhaliwal, A.; Ng, Q. K. T.; Du, J. J.; Yan, M.; Lu, Y. F.; Segura, T. Protein–polymer nanoparticles for nonviral gene delivery. Biomacromolecules 2011, 12, 1006–1014.CrossRefGoogle Scholar
  110. [110]
    Liu, X. Y.; Gao, W. P. In situ growth of self–assembled protein–polymer nanovesicles for enhanced intracellular protein delivery. ACS Appl. Mater. Interfaces 2017, 9, 2023–2028.CrossRefGoogle Scholar
  111. [111]
    Zhu, S. W.; Nih, L.; Carmichael, S. T.; Lu, Y. F.; Segura, T. Enzyme–responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 2015, 27, 3620–3625.CrossRefGoogle Scholar
  112. [112]
    Wen, J.; Yan, M.; Liu, Y.; Li, J.; Xie, Y. M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Specific elimination of latently HIV–1 infected cells using HIV–1 protease–sensitive toxin nanocapsules. PLoS One 2016, 11, e0151572.CrossRefGoogle Scholar
  113. [113]
    Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon–like self–degradable dna nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722–14725.CrossRefGoogle Scholar
  114. [114]
    Tian, H. J.; Du, J. J.; Wen, J.; Liu, Y.; Montgomery, S. R.; Scott, T. P.; Aghdsi, B.; Xiong, C. J.; Suzuki, A.; Hayashi, T. et al. Growth–factor nanocapsules that enable tunable controlled release for bone regeneration. ACS Nano 2016, 10, 7362–7369.CrossRefGoogle Scholar
  115. [115]
    Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose–responsive microgels integrated with enzyme nanocapsules for closed–loop insulin delivery. ACS Nano 2013, 7, 6758–6766.CrossRefGoogle Scholar
  116. [116]
    Cai, K. M.; Wang, A. Z.; Yin, L. C.; Cheng, J. J. Bio–nano interface: The impact of biological environment on nanomaterials and their delivery properties. J. Control. Release 2017, 263, 211–222.CrossRefGoogle Scholar
  117. [117]
    Middleton, J. C.; Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesTsinghua UniversityBeijingChina

Personalised recommendations