Skip to main content
Log in

In situ polymerization on biomacromolecules for nanomedicines

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional “grafting to” polymer–biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kinch, M. S. An overview of FDA–approved biologics medicines. Drug Discov. Today 2015, 20, 393–398.

    Google Scholar 

  2. Moorkens, E.; Meuwissen, N.; Huys, I.; Declerck, P.; Vulto, A. G.; Simoens, S. The market of biopharmaceutical medicines: A snapshot of a diverse industrial landscape. Front. Pharmacol. 2017, 8, 314.

    Google Scholar 

  3. Miller, K. L.; Lanthier, M. Innovation in biologic new molecular entities: 1986–2014. Nat. Rev. Drug Discov. 2015, 14, 83–83.

    Google Scholar 

  4. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

    Google Scholar 

  5. Carter, P. J. Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res. 2011, 317, 1261–1269.

    Google Scholar 

  6. Morrison, C. Fresh from the biotech pipeline–2017. Nat. Biotechnol. 2018, 36, 131–136.

    Google Scholar 

  7. Smalley, E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 2017, 35, 998–999.

    Google Scholar 

  8. Yin, H.; Kauffman, K. J.; Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 2017, 16, 387–399.

    Google Scholar 

  9. Cornu, T. I.; Mussolino, C.; Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017, 23, 415–423.

    Google Scholar 

  10. Vazquez, E.; Corchero, J. L.; Villaverde, A. Post–production protein stability: Trouble beyond the cell factory. Microb. Cell Fact. 2011, 10, 60.

    Google Scholar 

  11. Tsui, N. B. Y.; Ng, E. K. O.; Lo, Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 2002, 48, 1647–1653.

    Google Scholar 

  12. Morales, J. O.; Fathe, K. R.; Brunaugh, A.; Ferrati, S.; Li, S.; Montenegro–Nicolini, M.; Mousavikhamene, Z.; McConville, J. T.; Prausnitz, M. R.; Smyth, H. D. C. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017, 19, 652–668.

    Google Scholar 

  13. Ray, M.; Lee, Y. W.; SCaletti, F.; Yu, R. J.; Rotello, V. M. Intracellular delivery of proteins by nanocarriers. Nanomedicine 2017, 12, 941–952.

    Google Scholar 

  14. Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40, 3638–3655.

    Google Scholar 

  15. Du, J. J.; Jin, J.; Yan, M.; Lu, Y. F. Synthetic nanocarriers for intracellular protein delivery. Curr. Drug Metab. 2012, 13, 82–92.

    Google Scholar 

  16. Kontermann, R. E. Half–life extended biotherapeutics. Expert Opin. Biol. Ther. 2016, 16, 903–915.

    Google Scholar 

  17. Yanover, C.; Jain, N.; Pierce, G.; Howard, T. E.; Sauna, Z. E. Pharmacogenetics and the immunogenicity of protein therapeutics. Nat. Biotechnol. 2011, 29, 870–873.

    Google Scholar 

  18. Mingozzi, F.; High, K. A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013, 122, 23–36.

    Google Scholar 

  19. Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem., Int. Ed. 2006, 45, 1198–1215.

    Google Scholar 

  20. Wu, Y. Z.; Ng, D. Y. W.; Kuan, S. L.; Weil, T. Protein–polymer therapeutics: A macromolecular perspective. Biomater. Sci. 2015, 3, 214–230.

    Google Scholar 

  21. Zhang, P.; Wagner, E. History of polymeric gene delivery systems. Top. Curr. Chem. 2017, 375, 26.

    Google Scholar 

  22. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

    Google Scholar 

  23. Turecek, P. L.; Bossard, M. J.; Schoetens, F.; Ivens, I. A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016, 105, 460–475.

    Google Scholar 

  24. Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.

    Google Scholar 

  25. Pelegri–O'Day, E. M.; Lin, E. W.; Maynard, H. D. Therapeutic protein–polymer conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014, 136, 14323–14332.

    Google Scholar 

  26. Qi, Y. Z.; Chilkoti, A. Growing polymers from peptides and proteins: A biomedical perspective. Polym. Chem. 2014, 5, 266–276.

    Google Scholar 

  27. Ye, Y. Q.; Yu, J. C.; Gu, Z. Versatile protein nanogels prepared by in situ polymerization. Macromol. Chem. Phys. 2016, 217, 333–343.

    Google Scholar 

  28. Bontempo, D.; Maynard, H. D. Streptavidin as a macroinitiator for polymerization: In situ protein–polymer conjugate formation. J. Am. Chem. Soc. 2005, 127, 6508–6509.

    Google Scholar 

  29. Heredia, K. L.; Bontempo, D.; Ly, T.; Byers, J. T.; Halstenberg, S.; Maynard, H. D. In situ preparation of protein—“Smart” polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 2005, 127, 16955–16960.

    Google Scholar 

  30. Lele, B. S.; Murata, H.; Matyjaszewski, K.; Russell, A. J. Synthesis of uniform protein–polymer conjugates. Biomacromolecules 2005, 6, 3380–3387.

    Google Scholar 

  31. Nicolas, J.; San Miguel, V.; Mantovani, G.; Haddleton, D. M. Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chem. Commun. 2006, 4697–4699.

    Google Scholar 

  32. Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Google Scholar 

  33. Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139–4146.

    Google Scholar 

  34. Min, K.; Gao, H. F.; Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825–3830.

    Google Scholar 

  35. Magnusson, J. P.; Bersani, S.; Salmaso, S.; Alexander, C.; Caliceti, P. In situ growth of side–chain PEG polymers from functionalized human growth hormone—A new technique for preparation of enhanced protein–polymer conjugates. Bioconjugate Chem. 2010, 21, 671–678.

    Google Scholar 

  36. Yasayan, G.; Saeed, A. O.; Fernández–Trillo, F.; Allen, S.; Davies, M. C.; Jangher, A.; Paul, A.; Thurecht, K. J.; King, S. M.; Schweins, R. et al. Responsive hybrid block co–polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polym. Chem. 2011, 2, 1567–1578.

    Google Scholar 

  37. Zhu, B. B.; Lu, D. N.; Ge, J.; Liu, Z. Uniform polymerprotein conjugate by aqueous AGET ATRP using protein as a macroinitiator. Acta Biomater. 2011, 7, 2131–2138.

    Google Scholar 

  38. Averick, S.; Simakova, A.; Park, S.; Konkolewicz, D.; Magenau, A. J. D.; Mehl, R. A.; Matyjaszewski, K. ATRP under biologically relevant conditions: Grafting from a protein. ACS Macro Lett. 2012, 1, 6–10.

    Google Scholar 

  39. Mansfield, K. M.; Maynard, H. D. Site–specific insulintrehalose glycopolymer conjugate by grafting from strategy improves bioactivity. ACS Macro Lett. 2018, 7, 324–329.

    Google Scholar 

  40. Averick, S. E.; Bazewicz, C. G.; Woodman, B. F.; Simakova, A.; Mehl, R. A.; Matyjaszewski, K. Protein–polymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. Eur. Polym. J. 2013, 49, 2919–2924.

    Google Scholar 

  41. Cohen–Karni, D.; Kovaliov, M.; Ramelot, T.; Konkolewicz, D.; Graner, S.; Averick, S. Grafting challenging monomersfrom proteins using aqueous ICAR ATRP under bio–relevant conditions. Polym. Chem. 2017, 8, 3992–3998.

    Google Scholar 

  42. Zhang, Q.; Li, M. X.; Zhu, C. Y.; Nurumbetov, G.; Li, Z. D.; Wilson, P.; Kempe, K.; Haddleton, D. M. Well–defined protein/peptide–polymer conjugates by aqueous Cu–LRP: Synthesis and controlled self–assembly. J. Am. Chem. Soc. 2015, 137, 9344–9353.

    Google Scholar 

  43. Semsarilar, M.; Perrier, S. “Green” reversible additionfragmentation chain–transfer (RAFT) polymerization. Nat. Chem. 2010, 2, 811–820.

    Google Scholar 

  44. Liu, J. Q.; Bulmus, V.; Herlambang, D. L.; Barner–Kowollik, C.; Stenzel, M. H.; Davis, T. P. In situ formation of proteinpolymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem., Int. Ed. 2007, 46, 3099–3103.

    Google Scholar 

  45. Boyer, C.; Bulmus, V.; Liu, J. Q.; Davis, T. P.; Stenzel, M. H.; Barner–Kowollik, C. Well–defined protein–polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 2007, 129, 7145–7154.

    Google Scholar 

  46. Liu, J. Q.; Liu, H. Y.; Bulmus, V.; Tao, L.; Boyer, C.; Davis, T. P. A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. J. Polym. Sci. Pol. Chem. 2010, 48, 1399–1405.

    Google Scholar 

  47. De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperatureregulated activity of responsive polymer–protein conjugates prepared by grafting–from via RAFT polymerization. J. Am. Chem. Soc. 2008, 130, 11288–11289.

    Google Scholar 

  48. Li, H. M.; Li, M.; Yu, X.; Bapat, A. P.; Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2011, 2, 1531–1535.

    Google Scholar 

  49. Li, M.; Li, H. M.; De, P.; Sumerlin, B. S. Thermoresponsive block copolymer–protein conjugates prepared by graftingfrom via RAFT polymerization. Macromol. Rapid Commun. 2011, 32, 354–359.

    Google Scholar 

  50. Li, X.; Wang, L.; Chen, G. J.; Haddleton, D. M.; Chen, H. Visible light induced fast synthesis of protein–polymer conjugates: Controllable polymerization and protein activity. Chem. Commun. 2014, 50, 6506–6508.

    Google Scholar 

  51. Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. Grafting–from proteins using metal–free PET–RAFT polymerizations under mild visible–light irradiation. ACS Macro Lett. 2017, 6, 452–457.

    Google Scholar 

  52. Kovaliov, M.; Allegrezza, M. L.; Richter, B.; Konkolewicz, D.; Averick, S. Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting–from strategy. Polymer 2018, 137, 338–345.

    Google Scholar 

  53. Isarov, S. A.; Pokorski, J. K. Protein ROMP: Aqueous graft–from ring–opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969–973.

    Google Scholar 

  54. Fishman, J. M.; Kiessling, L. L. Synthesis of functionalizable and degradable polymers by ring–opening metathesis polymerization. Angew. Chem., Int. Ed. 2013, 52, 5061–5064.

    Google Scholar 

  55. Gao, W. P.; Liu, W. G.; Mackay, J. A.; Zalutsky, M. R.; Toone, E. J.; Chilkoti, A. In situ growth of a stoichiometric PEG–like conjugate at a protein’s N–terminus with significantly improved pharmacokinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 15231–15236.

    Google Scholar 

  56. Kim, C. H.; Axup, J. Y.; Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 2013, 17, 412–419.

    Google Scholar 

  57. Liu, C. C.; Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413–444.

    Google Scholar 

  58. Peeler, J. C.; Woodman, B. F.; Averick, S.; Miyake–Stoner, S. J.; Stokes, A. L.; Hess, K. R.; Matyjaszewski, K.; Mehl, R. A. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 2010, 132, 13575–13577.

    Google Scholar 

  59. Gao, W. P.; Liu, W. G.; Christensen, T.; Zalutsky, M. R.; Chilkoti, A. In situ growth of a PEG–like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA 2010, 107, 16432–16437.

    Google Scholar 

  60. Qi, Y. Z.; Amiram, M.; Gao, W. P.; McCafferty, D. G.; Chilkoti, A. Sortase–catalyzed initiator attachment enables high yield growth of a stealth polymer from the C terminus of a protein. Macromol. Rapid Commun. 2013, 34, 1256–1260.

    Google Scholar 

  61. Pokorski, J. K.; Breitenkamp, K.; Liepold, L. O.; Qazi, S.; Finn, M. G. Functional virus–based polymer–protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 2011, 133, 9242–9245.

    Google Scholar 

  62. Lou, X. H.; He, L. DNA–accelerated atom transfer radical polymerization on a gold surface. Langmuir 2006, 22, 2640–2646.

    Google Scholar 

  63. Qian, H.; He, L. Surface–Initiated activators generated by electron transfer for atom transfer radical polymerization in detection of DNA point mutation. Anal. Chem. 2009, 81, 4536–4542.

    Google Scholar 

  64. Lou, X. H.; Lewis, M. S.; Gorman, C. B.; He, L. Detection of DNA point mutation by atom transfer radical polymerization. Anal. Chem. 2005, 77, 4698–4705.

    Google Scholar 

  65. Lou, X. H.; Wang, C. Y.; He, L. Core–shell Au nanoparticle formation with DNA–polymer hybrid coatings using aqueous ATRP. Biomacromolecules 2007, 8, 1385–1390.

    Google Scholar 

  66. Averick, S. E.; Dey, S. K.; Grahacharya, D.; Matyjaszewski, K.; Das, S. R. Solid–phase incorporation of an ATRP initiator for polymer–DNA biohybrids. Angew. Chem., Int. Ed. 2014, 53, 2739–2744.

    Google Scholar 

  67. Pan, X. C.; Lathwal, S.; Mack, S.; Yan, J. J.; Das, S. R.; Matyjaszewski, K. Automated synthesis of well–defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer. Angew. Chem., Int. Ed. 2017, 56, 2740–2743.

    Google Scholar 

  68. Lin, E. W.; Maynard, H. D. Grafting from small interfering ribonucleic acid (siRNA) as an alternative synthesis route to siRNA–polymer conjugates. Macromolecules 2015, 48, 5640–5647.

    Google Scholar 

  69. Tokura, Y.; Jiang, Y. Y.; Welle, A.; Stenzel, M. H.; Krzemien, K. M.; Michaelis, J.; Berger, R.; Barner–Kowollik, C.; Wu, Y. Z.; Weil, T. Bottom–up fabrication of nanopatterned polymers on DNA origami by in situ atom–transfer radical polymerization. Angew. Chem., Int. Ed. 2016, 55, 5692–5697.

    Google Scholar 

  70. Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. K. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 2006, 128, 11008–11009.

    Google Scholar 

  71. Yan, M.; Liu, Z. X.; Lu, D. N.; Liu, Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 2007, 8, 560–565.

    Google Scholar 

  72. Ge, J.; Lu, D. A.; Wang, J.; Liu, Z. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 2009, 10, 1612–1618.

    Google Scholar 

  73. Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L. L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on singleprotein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

    Google Scholar 

  74. Ge, J.; Lu, D. N.; Wang, J.; Yan, M.; Lu, Y. F.; Liu, Z. Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 2008, 112, 14319–14324.

    Google Scholar 

  75. Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

    Google Scholar 

  76. Biswas, A.; Joo, K. I.; Liu, J.; Zhao, M. X.; Fan, G. P.; Wang, P.; Gu, Z.; Tang, Y. Endoprotease–mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5, 1385–1394.

    Google Scholar 

  77. Wen, J.; Anderson, S. M.; Du, J. J.; Yan, M.; Wang, J.; Shen, M. Q.; Lu, Y. F.; Segura, T. Controlled protein delivery based on enzyme–responsive nanocapsules. Adv. Mater. 2011, 23, 4549–4553.

    Google Scholar 

  78. Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Redox–responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.

    Google Scholar 

  79. Biswas, A.; Liu, Y.; Liu, T. F.; Fan, G. P.; Tang, Y. Polyethylene glycol–based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 2012, 33, 5459–5467.

    Google Scholar 

  80. Yan, M.; Liang, M.; Wen, J.; Liu, Y.; Lu, Y. F.; Chen, I. S. Y. Single siRNA nanocapsules for enhanced RNAi delivery. J. Am. Chem. Soc. 2012, 134, 13542–13545.

    Google Scholar 

  81. Liang, M.; Yan, M.; Lu, Y. F.; Chen, I. S. Y. Retargeting vesicular stomatitis virus glycoprotein pseudotyped lentiviral vectors with enhanced stability by in situ synthesized polymer shell. Hum. Gene Ther. Method. 2013, 24, 11–18.

    Google Scholar 

  82. Zhao, M. X.; Hu, B. L.; Gu, Z.; Joo, K. I.; Wang, P.; Tang, Y. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor–selective protein complex. Nano Today 2013, 8, 11–20.

    Google Scholar 

  83. Zhao, M. X.; Liu, Y. R.; Hsieh, R. S.; Wang, N.; Tai, W. Y.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Clickable protein nanocapsules for targeted delivery of recombinant p53 protein. J. Am. Chem. Soc. 2014, 136, 15319–15325.

    Google Scholar 

  84. Beloqui, A.; Kobitski, A. Y.; Nienhaus, G. U.; Delaittre, G. A simple route to highly active single–enzyme nanogels. Chem. Sci. 2018, 9, 1006–1013.

    Google Scholar 

  85. Du, J. J.; Yu, C. M.; Pan, D. C.; Li, J. M.; Chen, W.; Yan, M.; Segura, T.; Lu, Y. F. Quantum–dot–decorated robust transductable bioluminescent nanocapsules. J. Am. Chem. Soc. 2010, 132, 12780–12781.

    Google Scholar 

  86. Du, J. J.; Jin, J.; Liu, Y.; Li, J.; Tokatlian, T.; Lu, Z. H.; Segura, T.; Yuan, X. B.; Yang, X. J.; Lu, Y. F. Gold–nanocrystalenhanced bioluminescent nanocapsules. ACS Nano 2014, 8, 9964–9969.

    Google Scholar 

  87. Gu, Z.; Biswas, A.; Joo, K. I.; Hu, B. L.; Wang, P.; Tang, Y. Probing protease activity by single–fluorescent–protein nanocapsules. Chem. Commun. 2010, 46, 6467–6469.

    Google Scholar 

  88. Li, J.; Jin, X.; Liu, Y.; Li, F.; Zhang, L. L.; Zhu, X. Y.; Lu, Y. F. Robust enzyme–silica composites made from enzyme nanocapsules. Chem. Commun. 2015, 51, 9628–9631.

    Google Scholar 

  89. Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

    Google Scholar 

  90. Los, M.; Panigrahi, S.; Rashedi, I.; Mandal, S.; Stetefeld, J.; Essmann, F.; Schulze–Osthoff, K. Apoptin, a tumor–selective killer. Biochim. Biophys. Acta 2009, 1793, 1335–1342.

    Google Scholar 

  91. Weng, D.; Jiang, Z. K.; Jin, J.; Wu, L.; Lu, Y. F. Enhanced structural stability of adenovirus nanocapsule. Prog. Nat. Sci.: Mater. 2014, 24, 171–174.

    Google Scholar 

  92. Liu, C. Y.; Wen, J.; Meng, Y. B.; Zhang, K. L.; Zhu, J. L.; Ren, Y.; Qian, X. M.; Yuan, X. B.; Lu, Y. F.; Kang, C. S. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv. Mater. 2015, 27, 292–297.

    Google Scholar 

  93. Yan, M.; Wen, J.; Liang, M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Modulation of gene expression by polymer nanocapsule delivery of DNA cassettes encoding small RNAs. PLoS One 2015, 10, e0127986.

    Google Scholar 

  94. Averick, S. E.; Magenau, A. J. D.; Simakova, A.; Woodman, B. F.; Seong, A.; Mehl, R. A.; Matyjaszewski, K. Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion. Polym. Chem. 2011, 2, 1476–1478.

    Google Scholar 

  95. Lucon, J.; Qazi, S.; Uchida, M.; Bedwell, G. J.; LaFrance, B.; Prevelige, P. E., Jr.; Douglas, T. Use of the interior cavity of the P22 capsid for site–specific initiation of atom–transfer radical polymerization with high–density cargo loading. Nat. Chem. 2012, 4, 781–788.

    Google Scholar 

  96. Wang, J. T.; Hong, Y. H.; Ji, X. T.; Zhang, M. M.; Liu, L.; Zhao, H. Y. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J. Mater. Chem. B 2016, 4, 4430–4438.

    Google Scholar 

  97. Wei, W.; Du, J. J.; Li, J.; Yan, M.; Zhu, Q.; Jin, X.; Zhu, X. Y.; Hu, Z. M.; Tang, Y.; Lu, Y. F. Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection. Adv. Mater. 2013, 25, 2212–2218.

    Google Scholar 

  98. Xu, G. F.; Xu, Y. H.; Li, A. H.; Chen, T.; Liu, J. Q. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. J. Polym. Sci.: Pol. Chem. 2017, 55, 1289–1293.

    Google Scholar 

  99. Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano–conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.

    Google Scholar 

  100. Hu, J.; Zhao, W. G.; Gao, Y.; Sun, M. M.; Wei, Y.; Deng, H. T.; Gao, W. P. Site–specific in situ growth of a cyclized protein–polymer conjugate with improved stability and tumor retention. Biomaterials 2015, 47, 13–19.

    Google Scholar 

  101. Zhang, P.; Sun, F.; Tsao, C.; Liu, S. J.; Jain, P.; Sinclair, A.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051.

    Google Scholar 

  102. Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031.

    Google Scholar 

  103. Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano–encapsulation with phosphorylcholinebased polymer. Nano Res. 2016, 9, 2424–2432.

    Google Scholar 

  104. Zhang, P.; Jain, P.; Tsao, C.; Sinclair, A.; Sun, F.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release 2016, 230, 73–78.

    Google Scholar 

  105. Zhang, X. P.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Encapsulating therapeutic proteins with polyzwitterions for lower macrophage nonspecific uptake and longer circulation time. ACS Appl. Mater. Interfaces 2017, 9, 7972–7978.

    Google Scholar 

  106. Zhang, X. P.; Xu, D.; Jin, X.; Liu, G.; Liang, S.; Wang, H.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J. Control. Release 2017, 255, 54–61.

    Google Scholar 

  107. Hu, J.; Wang, G. L.; Zhao, W. G.; Liu, X. Y.; Zhang, L. B.; Gao, W. P. Site–specific in situ growth of an interferonpolymer conjugate that outperforms PEGASYS in cancer therapy. Biomaterials 2016, 96, 84–92.

    Google Scholar 

  108. Hu, J.; Wang, G. L.; Zhao, W. G.; Gao, W. P. In situ growth of a C–terminal interferon–alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy. J. Control. Release 2016, 237, 71–77.

    Google Scholar 

  109. Zhang, J. J.; Lei, Y. G.; Dhaliwal, A.; Ng, Q. K. T.; Du, J. J.; Yan, M.; Lu, Y. F.; Segura, T. Protein–polymer nanoparticles for nonviral gene delivery. Biomacromolecules 2011, 12, 1006–1014.

    Google Scholar 

  110. Liu, X. Y.; Gao, W. P. In situ growth of self–assembled protein–polymer nanovesicles for enhanced intracellular protein delivery. ACS Appl. Mater. Interfaces 2017, 9, 2023–2028.

    Google Scholar 

  111. Zhu, S. W.; Nih, L.; Carmichael, S. T.; Lu, Y. F.; Segura, T. Enzyme–responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 2015, 27, 3620–3625.

    Google Scholar 

  112. Wen, J.; Yan, M.; Liu, Y.; Li, J.; Xie, Y. M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Specific elimination of latently HIV–1 infected cells using HIV–1 protease–sensitive toxin nanocapsules. PLoS One 2016, 11, e0151572.

    Google Scholar 

  113. Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon–like self–degradable dna nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722–14725.

    Google Scholar 

  114. Tian, H. J.; Du, J. J.; Wen, J.; Liu, Y.; Montgomery, S. R.; Scott, T. P.; Aghdsi, B.; Xiong, C. J.; Suzuki, A.; Hayashi, T. et al. Growth–factor nanocapsules that enable tunable controlled release for bone regeneration. ACS Nano 2016, 10, 7362–7369.

    Google Scholar 

  115. Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose–responsive microgels integrated with enzyme nanocapsules for closed–loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

    Google Scholar 

  116. Cai, K. M.; Wang, A. Z.; Yin, L. C.; Cheng, J. J. Bio–nano interface: The impact of biological environment on nanomaterials and their delivery properties. J. Control. Release 2017, 263, 211–222.

    Google Scholar 

  117. Middleton, J. C.; Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346.

    Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Research and Development Program of China (No. 2017YFA0207900) and The Global Talents Recruitment Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Wang, L. & Du, J. In situ polymerization on biomacromolecules for nanomedicines. Nano Res. 11, 5028–5048 (2018). https://doi.org/10.1007/s12274-018-2080-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2080-2

Keywords

Navigation