Skip to main content
Log in

Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The promising potential of photodynamic therapy (PDT) has fueled the development of minimally invasive therapeutic approaches for cancer therapy. However, overcoming limitations in PDT efficacy in the hypoxic tumor environment and light penetration depth remains a challenge. We report the engineering of tungsten carbide nanoparticles (W2C NPs) for 1,064 nm laser-activated dual-type PDT and combined theranostics. The synthesized W2C NPs allow the robust generation of dual-type reactive oxygen species, including hydroxyl radicals (type I) and singlet oxygen (type II), using only single 1,064 nm laser activation, enabling effective PDT even in the hypoxic tumor environment. The W2C NPs also possess high photothermal performance under 1,064 nm laser irradiation, thus enabling synergistically enhanced cancer therapeutic efficacy of PDT and photothermal therapy. Additionally, the photoacoustic and X-ray computed tomography bioimaging properties of W2C NPs facilitate the integration of tumor diagnosis and therapy. The developed W2C based theranostic nanoagents increase the generation of reactive oxygen species in hypoxic tumors, improve the light penetration depth, and facilitate combined photothermal therapy and photoacoustic/computed tomography dual-mode bioimaging. These attributes could spur the exploration of transition metal carbides for advanced biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmans, D. E.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  Google Scholar 

  2. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    Article  Google Scholar 

  3. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  Google Scholar 

  4. Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519.

    Article  Google Scholar 

  5. Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016, 28, 3313–3320.

    Article  Google Scholar 

  6. Liang, X. L.; Li, X. D.; Jing, L. J.; Yue, X. L.; Dai, Z. F. Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials 2014, 35, 6379–6388.

    Article  Google Scholar 

  7. Jiang, X. P.; Zhu, N. B.; Zhao, D. H.; Ma, Y. G. New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Sci. China Chem. 2016, 59, 40–52.

    Article  Google Scholar 

  8. Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905.

    Article  Google Scholar 

  9. Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X. H.; Childs, C. J. H.; Sibata, C. H. Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 2004, 1, 27–42.

    Article  Google Scholar 

  10. Kennedy, J. C.; Marcus, S. L.; Pottier, R. H. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. J. Clin. Laser Med. Surg. 1996, 14, 289–304.

    Google Scholar 

  11. Soler, A. M.; Warloe, T.; Tausjo, J.; Giercksky, K. E. Photodynamic therapy of residual or recurrent basal cell carcinoma after radiotherapy using topical 5-aminolevulinic acid or methylester aminolevulinic acid. Acta Oncol. 2000, 39, 605–609.

    Article  Google Scholar 

  12. Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676–688.

    Article  Google Scholar 

  13. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

    Article  Google Scholar 

  14. Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016, 16, 6257–6264.

    Article  Google Scholar 

  15. Imani, R.; Dillert, R.; Bahnemann, D. W.; Pazoki, M.; Apih, T.; Kononenko, V.; Repar, N.; Kralj-Iglic, V.; Boschloo, G.; Drobne, D. et al. Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: Photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small 2017, 13, 1700349.

    Article  Google Scholar 

  16. Mou, J.; Lin, T. Q.; Huang, F. Q.; Shi, J. L.; Chen, H. R. A new green titania with enhanced NIR absorption for mitochondria-targeted cancer therapy. Theranostics 2017, 7, 1531–1542.

    Article  Google Scholar 

  17. Gilson, R. C.; Black, K. C. L.; Lane, D. D.; Achilefu, S. Hybrid TiO2-ruthenium nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew. Chem., Int. Ed. 2017, 129, 10857–10860.

    Article  Google Scholar 

  18. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Article  Google Scholar 

  19. Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem., Int. Ed. 2013, 52, 12332–12336.

    Article  Google Scholar 

  20. Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280–7290.

    Article  Google Scholar 

  21. Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infrared light activation. Small 2014, 10, 1612–1622.

    Article  Google Scholar 

  22. Gao, L.; Liu, R.; Gao, F. P.; Wang, Y. L.; Jiang, X. L.; Gao, X. Y. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260–7271.

    Article  Google Scholar 

  23. Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133–4144.

    Article  Google Scholar 

  24. Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.

    Article  Google Scholar 

  25. Li, Y.; Tang, J. L.; Pan, D. X.; Sun, L. D.; Chen, C. Y.; Liu, Y.; Wang, Y. F.; Shi, S.; Yan, C. H. A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 2016, 10, 2766–2773.

    Article  Google Scholar 

  26. Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689–6695.

    Article  Google Scholar 

  27. Guo, W.; Guo, C. S.; Zheng, N. N.; Sun, T. D.; Liu, S. Q. CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment. Adv. Mater. 2017, 29, 1604157.

    Article  Google Scholar 

  28. Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555.

    Article  Google Scholar 

  29. Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547–549.

    Article  Google Scholar 

  30. Bennett, L. H.; Cuthill, J. R.; McAlister, A. J.; Erickson, N. E.; Watson, R. E. Electronic structure and catalytic behavior of tungsten carbide. Science 1974, 184, 563–565.

    Article  Google Scholar 

  31. Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.

    Article  Google Scholar 

  32. Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 2016, 7, 13216.

    Article  Google Scholar 

  33. Xuan, J. N.; Wang, Z. Q.; Chen, Y. Y.; Liang, D. J.; Cheng, L.; Yang, X. J.; Liu, Z.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem., Int. Ed. 2016, 55, 14569–14574.

    Article  Google Scholar 

  34. Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 2008, 20, 4154–4157.

    Google Scholar 

  35. Choi, K. Y.; Yoon, H. Y.; Kim, J. H.; Bae, S. M.; Park, R. W.; Kang, Y. M.; Kim, I. S.; Kwon, I. C.; Choi, K.; Jeong, S. Y. et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011, 5, 8591–8599.

    Article  Google Scholar 

  36. Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522–529.

    Article  Google Scholar 

  37. Li, H.; Jia, Y.; Wang, A. H.; Cui, W.; Ma, H. C.; Feng, X. Y.; Li, J. B. Self-assembly of hierarchical nanostructures from dopamine and polyoxometalate for oral drug delivery. Chem.—Eur. J. 2014, 20, 499–504.

    Article  Google Scholar 

  38. Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799–6802.

    Article  Google Scholar 

  39. Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2014, 2, 1031–1037.

    Article  Google Scholar 

  40. Barybin, M. V.; Chisholm, M. H.; Patmore, N. J.; Robinson, R. E.; Singh, N. Concerning the molecular and electronic structure of a tungsten-tungsten quadruply bonded complex supported by two 6-carboethoxy-2-carboxylatoazulene ligands. Chem. Commun. 2007, 3652–3664.

    Google Scholar 

  41. Li, W. Z.; Li, J.; Wang, X.; Ma, J.; Chen, Q. Y. Effect of citric acid on photoelectrochemical properties of tungsten trioxide films prepared by the polymeric precursor method. Appl. Surf.Sci. 2010, 256, 7077–7082.

    Article  Google Scholar 

  42. Bai, S. L.; Zhang, K. W.; Shu, X.; Chen, S.; Luo, R. X.; Li, D. Q.; Chen, A. F. Carboxyl-directed hydrothermal synthesis of WO3 nanostructures and their morphology-dependent gas-sensing properties. CrystEngComm 2014, 16, 10210–10217.

    Article  Google Scholar 

  43. Wu, Z. X.; Yang, Y. X.; Gu, D.; Li, Q.; Feng, D.; Chen, Z. X.; Tu, B.; Webley, P. A.; Zhao, D. Y. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small 2009, 5, 2738–2749.

    Article  Google Scholar 

  44. Xu, Y.-T.; Xiao, X. F.; Ye, Z.-M.; Zhao, S. L.; Shen, R. G.; He, C.-T.; Zhang, J.-P.; Li, Y. D.; Chen, X.-M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

    Article  Google Scholar 

  45. Wang, Y. L.; Nie, T.; Li, Y. H.; Wang, X. L.; Zheng, L. R.; Chen, A. P.; Gong, X. Q.; Yang, H. G. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm. Angew. Chem., Int. Ed. 2017, 56, 7430–7434.

    Article  Google Scholar 

  46. Hu, Z. F.; Liu, G.; Chen, X. Q.; Shen, Z. R.; Yu, J. C. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 2016, 26, 4445–4455.

    Article  Google Scholar 

  47. Xu, X. X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595–598.

    Article  Google Scholar 

  48. Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896–11900.

    Article  Google Scholar 

  49. Song, X. R.; Li, S. H.; Dai, J. Y.; Song, L.; Huang, G. M.; Lin, R. H.; Li, J.; Liu, G.; Yang, H. H. Polyphenol-inspired facile construction of smart assemblies for ATP-and pH-responsive tumor MR/optical imaging and photothermal therapy. Small 2017, 13, 1603997.

    Article  Google Scholar 

  50. Guo, C. S.; Yu, H. J.; Feng, B.; Gao, W. D.; Yan, M.; Zhang, Z. W.; Li, Y. P.; Liu, S. Q. Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent. Biomaterials 2015, 52, 407–416.

    Article  Google Scholar 

  51. Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

    Article  Google Scholar 

  52. De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

    Article  Google Scholar 

  53. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  Google Scholar 

  54. Lin, L. S.; Yang, X. Y.; Zhou, Z. J.; Yang, Z.; Jacobson, O.; Liu, Y. J.; Yang, A.; Liu, G.; Song, J. B.; Yang, H. H. et al. Yolk-shell nanostructure: An ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv. Mater. 2017, 29, 1606681.

    Article  Google Scholar 

  55. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  56. Dong, K.; Liu, Z.; Liu, J. H.; Huang, S.; Li, Z. H.; Yuan, Q. H.; Ren, J. S.; Qu, X. G. Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging. Nanoscale 2014, 6, 2211–2217.

    Article  Google Scholar 

  57. Tian, G.; Zhang, X.; Zheng, X. P.; Yin, W. Y.; Ruan, L. F.; Liu, X. D.; Zhou, L. J.; Yan, L.; Li, S. J.; Gu, Z. J. et al. Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. Small 2014, 10, 4160–4170.

    Google Scholar 

  58. Luo, Y.; Ziebell, M. R.; Prestwich, G. D. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 2000, 1, 208–218.

    Article  Google Scholar 

  59. He, Q. J.; Ma, M.; Wei, C. Y.; Shi, J. L. Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials 2012, 33, 4392–4402.

    Article  Google Scholar 

  60. Lepock, J. R. Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 2003, 19, 252–266.

    Article  Google Scholar 

  61. Ahmed, M.; Brace, C. L.; Lee, F. T., Jr.; Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U1505221, 21635002, 21475026, 21775025, and U1705281), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11), and the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hua Lu or Huang-Hao Yang.

Electronic supplementary material

12274_2018_2075_MOESM1_ESM.pdf

Engineering of tungsten carbide nanoparticles forimaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SH., Yang, W., Liu, Y. et al. Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer. Nano Res. 11, 4859–4873 (2018). https://doi.org/10.1007/s12274-018-2075-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2075-z

Keywords

Navigation