Skip to main content
Log in

Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common malignancy in the bone. Current chemotherapy offers limited efficacy with significant side effects, especially for advanced and relapsed osteosarcomas. Nanoparticle-formulated chemotherapeutic drugs may be used to resolve these issues, but several aspects of these formulations remain unsatisfactory, such as how to improve their stability in the bloodstream, prevent undesirable drug leakage, and enhance targeted drug accumulation in the tumor. In this study, a tumor microenvironment-responsive calcium carbonate (CaCO3)-crosslinked hyaluronate (HA) nanoparticle was prepared via a “green” process to effectively deliver doxorubicin (DOX) for the treatment of various stages of osteosarcoma. The DOX-loaded hyaluronate-calcium carbonate hybrid nanoparticle (HA-DOX/CaCO3) demonstrated superior stability both in vitro and in vivo, and rapidly released DOX at the tumor site when triggered by the acidic tumor microenvironment. Compared with free DOX and a non-crosslinked nanoparticle (HA-DOX), HA-DOX/CaCO3 exhibited the most potent inhibition efficacy toward both primary and advanced models of murine osteosarcoma, resulting in effective tumor inhibition, improved survival time, and reduced adverse effects. Most importantly, in the advanced osteosarcoma model, HA-DOX/CaCO3 potently suppressed tumor growth by 84.6%, which indicates the potential of this platform for osteosarcoma treatment, particularly for advanced and relapsed cases. The proposed polysaccharide nanoparticle would be a promising drug delivery platform to advance osteosarcoma nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, D. D.; Luu, H. H. Osteosarcoma. In Orthopaedic Oncology. Peabody, T.; Attar, S., Eds.; Springer: Cham, 2014; pp 65–92.

    Google Scholar 

  2. Gu, X. Y.; Ding, J. X.; Zhang, Z. Y.; Li, Q.; Zhuang, X. L.; Chen, X. S. Polymeric nanocarriers for drug delivery in osteosarcoma treatment. Curr. Pharm. Des. 2015, 21, 5187–5197.

    Article  Google Scholar 

  3. Isakoff, M. S.; Bielack, S. S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol. 2015, 55, 3029–3035.

    Article  Google Scholar 

  4. Kansara, M.; Teng, M. W.; Smyth, M. J.; Thomas, D. M. Translational biology of osteosarcoma. Nat. Rev. Cancer 2014, 14, 722–735.

    Article  Google Scholar 

  5. Shen, G. Z.; Xing, R. R.; Zhang, N.; Chen, C. J.; Ma, G. H.; Yan, X. H. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy. ACS Nano 2016, 10, 5720–5729.

    Article  Google Scholar 

  6. He, L.; Li, D.; Wang, Z. T.; Xu, W. G.; Wang, J. X.; Guo, H.; Wang, C. X.; Ding, J. X. L-Cystine-crosslinked polypeptide nanogel as a reduction-responsive excipient for prostate cancer chemotherapy. Polymers 2016, 8, 36.

    Article  Google Scholar 

  7. Li, D.; Xu, W. G.; Li, P. Q.; Ding, J. X.; Cheng, Z. L.; Chen, L.; Yan, L. S.; Chen, X. S. Self-targeted polysaccharide prodrug suppresses orthotopic hepatoma. Mol. Pharmaceutics 2016, 15, 4231–4235.

    Article  Google Scholar 

  8. Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X.; Zhuang, X. L.; Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.

    Article  Google Scholar 

  9. Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722–14725.

    Article  Google Scholar 

  10. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Article  Google Scholar 

  11. Jiang, T. Y.; Sun, W. J.; Zhu, Q. W.; Burns, N. A.; Khan, S. A.; Mo, R.; Gu, Z. Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 2015, 27, 1021–1028.

    Article  Google Scholar 

  12. Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154–8162.

    Article  Google Scholar 

  13. de Faria, P. C. B.; dos Santos, L. I.; Coelho, J. P.; Ribeiro, H. B.; Pimenta, M. A.; Ladeira, L. O.; Gomes, D. A.; Furtado, C. A.; Gazzinelli, R. T. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8+ T cell response and protection against cancer. Nano Lett. 2014, 14, 5458–5470.

    Article  Google Scholar 

  14. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Del. Rev. 2013, 65, 36–48.

    Article  Google Scholar 

  15. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  Google Scholar 

  16. Feng, X. R.; Ding, J. X.; Gref, R.; Chen, X. S. Poly(£-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chin. J. Polym. Sci. 2017, 35, 693–699.

    Article  Google Scholar 

  17. Zhang, X. D.; Liang, X.; Gu, J. J.; Chang, D. F.; Zhang, J. X.; Chen, Z. W.; Ye, Y. Q.; Wang, C.; Tao, W.; Zeng, X. W. et al. Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale 2017, 9, 150–163.

    Article  Google Scholar 

  18. Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016, 28, 3313–3320.

    Article  Google Scholar 

  19. Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. 2018, 1700821.

    Google Scholar 

  20. Li, M. Q.; Tang, Z. H.; Zhang, D. W.; Sun, H.; Liu, H. Y.; Zhang, Y.; Zhang, Y. Y.; Chen, X. S. Doxorubicin-loaded polysaccharide 15 nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015, 51, 161–172.

    Article  Google Scholar 

  21. Ma, X. M.; Zhang, X. T.; Yang, L.; Wang, G.; Jiang, K.; Wu, G.; Cui, W. G.; Wei, Z. P. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications. Nanoscale 2016, 8, 8687–8695.

    Article  Google Scholar 

  22. Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; McLeish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. 2008, 130, 15808–15810.

    Article  Google Scholar 

  23. Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

    Article  Google Scholar 

  24. Dong, Z. L.; Feng, L. Z.; Hao, Y.; Chen, M. C.; Gao, M.; Chao, Y.; Zhao, H.; Zhu, W. W.; Liu, J. J.; Liang, C. et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 2018, 140, 2165–2178.

    Article  Google Scholar 

  25. Gonçalves, M.; Maciel, D.; Capelo, D.; Xiao, S. L.; Sun, W. J.; Shi, X. Y.; Rodrigues, J.; Tomas, H.; Li, Y. L. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromolecules 2014, 15, 492–499.

    Article  Google Scholar 

  26. Liang, P.; Zhao, D.; Wang, C. Q.; Zong, J. Y.; Zhuo, R. X.; Cheng, S. X. Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids Surf. B Biointerfaces 2013, 102, 783–788.

    Article  Google Scholar 

  27. Han, S. Y.; Han, H. S.; Lee, S. C.; Kang, Y. M.; Kim, I. S.; Park, J. H. Mineralized hyaluronic acid nanoparticles as a robust drug carrier. J. Mater. Chem. 2011, 21, 7996–8001.

    Article  Google Scholar 

  28. Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X. Y. et al. pH-controlled gas-generating mineralized nanoparticles: A theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 2015, 9, 134–145.

    Article  Google Scholar 

  29. Ma, X. M.; Chen, H. F.; Yang, L.; Wang, K.; Guo, Y. M.; Yuan, L. Construction and potential applications of a functionalized cell with an intracellular mineral scaffold. Angew. Chem., Int. Ed. 2011, 50, 7414–7417.

    Article  Google Scholar 

  30. Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed 2015, 54, 919–922.

    Article  Google Scholar 

  31. Ding, J.; Liang, T.; Zhou, Y.; He, Z. W.; Min, Q. H.; Jiang, L. P.; Zhu, J. J. Hyaluronidase-triggered anticancer drug and sirna delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Res. 2017, 10, 690–703.

    Article  Google Scholar 

  32. Zhang, Y.; Wu, K. Q.; Sun, H. L.; Zhang, J.; Yuan, J. D.; Zhong, Z. Y. Hyaluronic acid-shelled disulfide-cross-linked nanopolymersomes for ultrahigh-efficiency reactive encapsulation and CD44-targeted delivery of mertansine toxin. ACS Appl. Mater. Interfaces 2018, 10, 1597–1604.

    Article  Google Scholar 

  33. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Article  Google Scholar 

  34. Xu, W. G.; Ding, J. X.; Xiao, C. S.; Li, L. Y.; Zhuang, X. L.; Chen, X. S. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015, 54, 72–86.

    Article  Google Scholar 

  35. Li, C.; Qian, M.; Wang, S.; Jiang, H.; Du, Y.; Wang, J.; Lu, W.; Murthy, N.; Huang, R. Aptavalve-gated mesoporous carbon nanospheres image cellular mucin and provide on-demand targeted drug delivery. Theranostics 2017, 7, 3319–3325.

    Article  Google Scholar 

  36. Han, X. P.; Li, Z. B.; Sun, J.; Luo, C.; Li, L.; Liu, Y. H.; Du, Y. Q.; Qiu, S. H.; Ai, X. Y.; Wu, C. N. et al. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: Probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. J. Controlled Release 2015, 197, 29–40.

    Article  Google Scholar 

  37. Li, S. Y.; Liu, L. H.; Cheng, H.; Li, B.; Qiu, W. X.; Zhang, X. Z. A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem. Commun. 2015, 51, 14520–14523.

    Article  Google Scholar 

  38. Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274–283.

    Article  Google Scholar 

  39. Hu, Q. Y.; Sun, W. J.; Lu, Y.; Bomba, H. N.; Ye, Y. Q.; Jiang, T. Y.; Isaacson, A. J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett. 2016, 16, 1118–1126.

    Article  Google Scholar 

  40. Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A. M.; Concheiro, A. Crosslinked ionic polysaccharides for stimulisensitive drug delivery. Adv. Drug Del. Rev. 2013, 65, 1148–1171.

    Article  Google Scholar 

  41. Li, M. Q.; Lv, S. X.; Tang, Z. H.; Song, W. T.; Yu, H. Y.; Sun, H.; Liu, H. Y.; Chen, X. S. Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. Macromol. Biosci. 2013, 13, 1150–1162.

    Article  Google Scholar 

  42. Li, S. Y.; Zhang, T.; Xu, W. G.; Ding, J. X.; Yin, F.; Xu, J.; Sun, W.; Wang, H. S.; Sun, M. X.; Cai, Z. D. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics 2018, 8, 1361–1375.

    Article  Google Scholar 

  43. Jiang, Q.; Nie, Y.; Chen, X. B.; He, Y. Y.; Yue, D.; Gu, Z. W. pH-triggered pinpointed cascading charge-conversion and redox-controlled gene release design: Modularized fabrication for nonviral gene transfection. Adv. Funct. Mater. 2017, 27, 1701571.

    Article  Google Scholar 

  44. Lei, M.; Fu, C.; Cheng, X.; Fu, B.; Wu, N. N.; Zhang, Q.; Fu, A. L.; Cheng, J. L.; Gao, J. H.; Zhao, Z. H. Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging. Adv. Funct. Mater. 2017, 27, 1700978.

    Article  Google Scholar 

  45. Zhang, Y.; Xiao, C. S.; Li, M. Q.; Ding, J. X.; He, C. L.; Zhuang, X. L.; Chen, X. S. Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polym. Chem. 2014, 5, 2801–2808.

    Article  Google Scholar 

  46. He, Q.; Huang, S.; Xu, S. Y.; Wang, L. Y. pH-responsive cocktail drug nanocarriers by encapsulating paclitaxel with doxorubicin modified poly(amino acid). RSC Adv. 2015, 5, 43148–43154.

    Article  Google Scholar 

  47. McGowan, J. V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J. M.; Yellon, D. M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75.

    Article  Google Scholar 

  48. Zhao, Y. Y.; Chen, F.; Pan, Y. M.; Li, Z. P.; Xue, X. D.; Okeke, C. I.; Wang, Y. F.; Li, C.; Peng, L.; Wang, P. C. et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl. Mater. Interfaces 2015, 7, 19295–19305.

    Article  Google Scholar 

  49. Lee, S. M.; O’Halloran, T. V.; Nguyen, S. T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130–17138.

    Article  Google Scholar 

  50. Zhang, W. J.; Wang, F. H.; Wang, Y.; Wang, J. N.; Yu, Y. N.; Guo, S. R.; Chen, R. J.; Zhou, D. J. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Controlled Release 2016, 232, 9–19.

    Article  Google Scholar 

  51. Wang, C.; Wu, C. Y.; Zhou, X. J.; Han, T.; Xin, X. Z.; Wu, J. Y.; Zhang, J. Y.; Guo, S. W. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 2013, 3, 2852.

    Article  Google Scholar 

  52. Farhane, Z.; Bonnier, F.; Byrne, H. J. Monitoring doxorubicin cellular uptake and trafficking using in vitro raman microspectroscopy: Short and long time exposure effects on lung cancer cell lines. Anal. Bioanal. Chem. 2017, 409, 1333–1346.

    Article  Google Scholar 

  53. Zhao, K. D.; Li, D.; Xu, W. G.; Ding, J. X.; Jiang, W. Q.; Li, M. Q.; Wang, C. X.; Chen, X. S. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 2017, 116, 82–94.

    Article  Google Scholar 

  54. Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 155, 933–940.

    Article  Google Scholar 

  55. Ding, J. X.; Xu, W. G.; Zhang, Y.; Sun, D. K.; Xiao, C. S.; Liu, D. H.; Zhu, X. J.; Chen, X. S. Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery. J. Controlled Release 2013, 172, 444–455.

    Article  Google Scholar 

  56. Lv, S. X.; Tang, Z. H.; Li, M. Q.; Lin, J.; Song, W. T.; Liu, H. Y.; Huang, Y. B.; Zhang, Y. Y.; Chen, X. S. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 2014, 55, 6118–6129.

    Article  Google Scholar 

  57. Li, M. Q.; Tang, Z. H.; Lv, S. X.; Song, W. T.; Hong, H.; Jing, X. B.; Zhang, Y. Y.; Chen, X. S. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 2014, 55, 3851–3864.

    Article  Google Scholar 

  58. Kang, M. S.; Singh, R. K.; Kim, T. H.; Kim, J. H.; Patel, K. D.; Kim, H. W. Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 2017, 55, 466–480.

    Article  Google Scholar 

  59. Tao, X. Y.; Jia, N.; Cheng, N. H.; Ren, Y. H.; Cao, X. N.; Liu, M.; Wei, D. Z.; Wang, F. Q. Design and evaluation of a phospholipase d based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials 2017, 151, 1–14.

    Article  Google Scholar 

  60. Li, M. Q.; Tang, Z. H.; Zhang, Y.; Lv, S. X.; Li, Q. S.; Chen, X. S. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015, 18, 132–143.

    Article  Google Scholar 

  61. Murthy, A.; Li, Y.; Peng, I.; Reichelt, M.; Katakam, A. K.; Noubade, R.; Roose-Girma, M.; DeVoss, J.; Diehl, L.; Graham, R. R. et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014, 506, 456–462.

    Article  Google Scholar 

  62. Okada, H.; Mak, T. W. Pathways of apoptotic and non-apoptotic 17 death in tumour cells. Nat. Rev. Cancer 2004, 4, 592–603.

    Article  Google Scholar 

  63. Wentzensen, N.; Schwartz, L.; Zuna, R. E.; Smith, K.; Mathews, C.; Gold, M. A.; Allen, R. A.; Zhang, R.; Dunn, S. T.; Walker, J. L. et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin. Cancer Res. 2012, 18, 4154–4162.

    Article  Google Scholar 

  64. Bertz, S.; Otto, W.; Denzinger, S.; Wieland, W. F.; Burger, M.; Stohr, R.; Link, S.; Hofstadter, F.; Hartmann, A. Combination of CK20 and Ki-67 immunostaining analysis predicts recurrence, progression, and cancer-specific survival in pt1 urothelial bladder cancer. Eur. Urol. 2014, 65, 218–226.

    Article  Google Scholar 

  65. Sun, D. K.; Ding, J. X.; Xiao, C. S.; Chen, J. J.; Zhuang, X. L.; Chen, X. S. Preclinical evaluation of antitumor activity of acid-sensitive pegylated doxorubicin. ACS Appl. Mater. Interfaces 2014, 6, 21202–21214.

    Article  Google Scholar 

  66. Miranda, C. J.; Makui, H.; Soares, R. J.; Bilodeau, M.; Mui, J.; Vali, H.; Bertrand, R.; Andrews, N. C.; Santos, M. M. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 2003, 102, 2574–2580.

    Article  Google Scholar 

  67. Ding, J. X.; Li, C.; Zhang, Y.; Xu, W. G.; Wang, J.; Chen, X. Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomater. 2015, 11, 346–355.

    Article  Google Scholar 

  68. Han, K.; Zhang, W. Y.; Zhang, J.; Ma, Z. Y.; Han, H. Y. pH-responsive nanoscale coordination polymer for efficient drug delivery and real-time release monitoring. Adv. Healthcare Mater 2017, 6, 1700470.

    Article  Google Scholar 

  69. Li, X. R.; Yang, X. C.; Lin, Z. Q.; Wang, D.; Mei, D.; He, B.; Wang, X. Y.; Wang, X. Y.; Zhang, Q.; Gao, W. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur. J. Pharm. Sci. 2015, 76, 95–101.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Weiqian Jiang at Yale University for his constructive comments and suggestions. This research was financially supported by the National Natural Science Foundation of China (Nos. 51673190, 51603204, 51473165, 51390484, 81402500, and 51520105004), the National Key Specialty Construction Project of Clinical Pharmacy (No. 30305030698), and the Science and Technology Development Program of Jilin Province (Nos. 20160204015SF and 20160204018SF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingqiang Li or Jianxun Ding.

Electronic supplementary material

12274_2018_2066_MOESM1_ESM.pdf

Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, L., Li, D. et al. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res. 11, 4806–4822 (2018). https://doi.org/10.1007/s12274-018-2066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2066-0

Keywords

Navigation