Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction

  • Min Tang
  • Shuiping Luo
  • Kai Wang
  • Hongyu Du
  • Rinrada Sriphathoorat
  • Peikang Shen
Research Article
  • 27 Downloads

Abstract

Multimetallic Pt-based alloys with excavated structures have attracted great interest owing to their compositional and morphological tunability, high specific surface areas, and impressive electro-catalytic activities. Herein, we report the first facile one-pot synthesis of trimetallic Pt-Ni-Cu highly excavated rhombic dodecahedrons (ERDs) with a yield approaching 100%. More importantly, these highly uniform nanocrystals have three-dimensionally accessible excavated surfaces, where abundant stepped atoms are observed. Benefiting from the highly excavated rhombic dodecahedral structures, electronic and synergistic effects within the trimetallic alloy, and abundant stepped atoms, the as-prepared trimetallic Pt-Ni-Cu ERDs exhibit an enhanced electro-catalytic performance for the electro-oxidation of methanol compared to commercial Pt/C and bimetallic Pt-Cu ERDs and Pt-Ni-Cu solid rhombic dodecahedrons solid rhombic dodecahedrons (SRDs).

Keywords

trimetallic rhombic dodecahedron excavated corrosion stepped atoms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Major International (Regional) Joint Research Project (No. 51210002), the National Basic Research Program of China (No. 2015CB932304) and the Natural Science Foundation of Guangdong province (No. 2015A030312007).

Supplementary material

12274_2018_2063_MOESM1_ESM.pdf (5.6 mb)
Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction

References

  1. [1]
    van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem., Int. Ed. 2012, 51, 3139–3142.CrossRefGoogle Scholar
  2. [2]
    Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; Xie, S. F.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.CrossRefGoogle Scholar
  3. [3]
    Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870–2874.CrossRefGoogle Scholar
  4. [4]
    Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 2015, 5, 5333–5341.CrossRefGoogle Scholar
  5. [5]
    Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W. D.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.CrossRefGoogle Scholar
  6. [6]
    Luo, S. P.; Shen, P. K. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.CrossRefGoogle Scholar
  7. [7]
    Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. Carbonsupported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 2004, 108, 8234–8240.CrossRefGoogle Scholar
  8. [8]
    Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.CrossRefGoogle Scholar
  9. [9]
    Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 2010, 22, 6310–6318.CrossRefGoogle Scholar
  10. [10]
    Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.CrossRefGoogle Scholar
  11. [11]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.Google Scholar
  12. [12]
    Li, Y. J.; Quan, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.CrossRefGoogle Scholar
  13. [13]
    Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem.—Eur. J. 2012, 18, 777–782.CrossRefGoogle Scholar
  14. [14]
    Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.CrossRefGoogle Scholar
  15. [15]
    Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015–18021.CrossRefGoogle Scholar
  16. [16]
    Hwang, S. J.; Yoo, S. J.; Jang, S.; Lim, T.-H.; Hong, S. A.; Kim, S.-K. Ternary Pt−Fe−Co alloy electrocatalysts prepared by electrodeposition: Elucidating the roles of Fe and Co in the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 2483–2488.CrossRefGoogle Scholar
  17. [17]
    Cho, Y.-H.; Kim, O.-H.; Chung, D. Y.; Choe, H.; Cho, Y.-H.; Sung, Y.-E. PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl. Catal. B: Environ. 2014, 154–155, 309–315.CrossRefGoogle Scholar
  18. [18]
    Li, B. S.; Chan, S. H. PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading. Int. J. Hydrogen Energ. 2013, 38, 3338–3345.CrossRefGoogle Scholar
  19. [19]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  20. [20]
    Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.CrossRefGoogle Scholar
  21. [21]
    Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722–9725.CrossRefGoogle Scholar
  22. [22]
    Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.CrossRefGoogle Scholar
  23. [23]
    Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.CrossRefGoogle Scholar
  24. [24]
    Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefGoogle Scholar
  25. [25]
    Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. M. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.CrossRefGoogle Scholar
  26. [26]
    Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402–6410.CrossRefGoogle Scholar
  27. [27]
    Choi, S. I.; Xie, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X. H. et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420–3425.CrossRefGoogle Scholar
  28. [28]
    Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.CrossRefGoogle Scholar
  29. [29]
    Wu, Y.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.CrossRefGoogle Scholar
  30. [30]
    Dhavale, V. M.; Kurungot, S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catal. 2015, 5, 1445–1452.CrossRefGoogle Scholar
  31. [31]
    Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.CrossRefGoogle Scholar
  32. [32]
    Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.CrossRefGoogle Scholar
  33. [33]
    Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.CrossRefGoogle Scholar
  34. [34]
    Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.CrossRefGoogle Scholar
  35. [35]
    Wang, K.; Sriphathoorat, R.; Luo, S. P.; Tang, M.; Du, H. Y.; Shen, P. K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425–13430.CrossRefGoogle Scholar
  36. [35]
    Yin, J.; Wang, J.; Li, M.; Jin, C.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.CrossRefGoogle Scholar
  37. [36]
    Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.CrossRefGoogle Scholar
  38. [38]
    Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212–8222.CrossRefGoogle Scholar
  39. [39]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  40. [40]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  41. [41]
    Wang, Q.; Zhao, Z. L.; Jia, Y. L.; Wang, M. P.; Qi, W. H.; Pang, Y.; Yi, J.; Zhang, Y. F.; Li, Z.; Zhang, Z. Unique Cu@CuPt core–shell concave octahedron with enhanced methanol oxidation activity. ACS Appl. Mater. Interfaces 2017, 9, 36817–36827.CrossRefGoogle Scholar
  42. [42]
    Wang, Z. N.; Wang, H.; Zhang, Z. R.; Yang, G.; He, T.; Yin, Y. D.; Jin, M. S. Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties. ACS Nano 2017, 11, 163–170.CrossRefGoogle Scholar
  43. [43]
    Lee, H. E.; Yang, K. D.; Yoon, S. M.; Ahn, H. Y.; Lee, Y. Y.; Chang, H. J.; Jeong, D. H.; Lee, Y. S.; Kim, M. Y.; Nam, K. T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393.CrossRefGoogle Scholar
  44. [44]
    Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem., Int. Ed. 2010, 49, 411–414.CrossRefGoogle Scholar
  45. [45]
    Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.CrossRefGoogle Scholar
  46. [46]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  47. [47]
    Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbateassisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.CrossRefGoogle Scholar
  48. [48]
    Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.CrossRefGoogle Scholar
  49. [49]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  50. [50]
    Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.CrossRefGoogle Scholar
  51. [51]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  52. [52]
    Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au-Pd rhombic dodecahedra. Angew. Chem., Int. Ed.. 2011, 50, 3466–3470.CrossRefGoogle Scholar
  53. [53]
    Zhou, S.; Mesina, D. S.; Organt, M. A.; Yang, T. H.; Yang, X.; Huo, D.; Zhao, M.; Xia, Y. N. Site-selective growth of Ag nanocubes for sharpening their corners and edges, followed by elongation into nanobars through symmetry reduction. J. Mater. Chem. C 2018, 6, 1384–1392.CrossRefGoogle Scholar
  54. [54]
    Zhang, H.; Jin, M. S.; Xia, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.CrossRefGoogle Scholar
  55. [55]
    Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.Google Scholar
  56. [56]
    Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au-Pd rhombic dodecahedra. Angew. Chem., Int. Ed.. 2011, 50, 3466–3470.CrossRefGoogle Scholar
  57. [57]
    Personick, M. L.; Langille, M. R.; Zhang, J.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J. Am. Chem. Soc. 2011, 133, 6170–6173.CrossRefGoogle Scholar
  58. [58]
    Ferreira, P. J.; la O', G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—A mechanistic investigation. J. Electrochem. Soc. 2005, 152, A2256–A2271.CrossRefGoogle Scholar
  59. [59]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  60. [60]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  61. [61]
    Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.CrossRefGoogle Scholar
  62. [62]
    Zhang, C. L.; Sandorf, W.; Peng, Z. M. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catal. 2015, 5, 2296–2300.CrossRefGoogle Scholar
  63. [63]
    Liu, L. C.; Samjeské, G.; Takao, S.; Nagasawa, K.; Iwasawa, Y. Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J. Power Sources 2014, 253, 1–8.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Min Tang
    • 1
  • Shuiping Luo
    • 1
  • Kai Wang
    • 1
  • Hongyu Du
    • 1
  • Rinrada Sriphathoorat
    • 1
  • Peikang Shen
    • 1
    • 2
  1. 1.School of Physics, School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured MaterialsGuangxi UniversityNanningChina

Personalised recommendations