Nano Research

, Volume 11, Issue 9, pp 4774–4785 | Cite as

Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”

  • Jinpeng Li
  • Weiyang Wang
  • Wenxing Chen
  • Qinmei Gong
  • Jun Luo
  • Ruoqian Lin
  • Huolin Xin
  • Hui Zhang
  • Dingsheng Wang
  • Qing Peng
  • Wei Zhu
  • Chen Chen
  • Yadong Li
Research Article


Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.


sub-nm Ru cluster synthesis design ammonia decomposition ammonia synthesis metal-organic frameworks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21521091, 21131004, 21390393, U1463202, 21573119, 21590792, and 21406184). We also thank the Shanghai Synchrotron Radiation Facility (No. BL14W1) for providing beam time.

Supplementary material

12274_2018_2062_MOESM1_ESM.avi (263 kb)
Supplementary material, approximately 263 KB.
12274_2018_2062_MOESM2_ESM.avi (1.1 mb)
Supplementary material, approximately 1.09 MB.
12274_2018_2062_MOESM3_ESM.pdf (3.4 mb)
Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”


  1. [1]
    Spencer, N. D.; Schoonmaker, R. C.; Somorjai, G. A. Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia. Nature 1981, 294, 643–644.CrossRefGoogle Scholar
  2. [2]
    Rodriguez, J. A.; Goodman, D. W. High-pressure catalytic reactions over single-crystal metal surfaces. Surf. Sci. Rep. 1991, 14, 1–107.CrossRefGoogle Scholar
  3. [3]
    Liu, J. X.; Su, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287.CrossRefGoogle Scholar
  4. [4]
    Li, W. Z.; Liu, J. X.; Gu, J.; Zhou, W.; Yao, S. Y.; Si, R.; Guo, Y.; Su, H. Y.; Yan, C. H.; Li, W. X. et al. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2017, 139, 2267–2276.CrossRefGoogle Scholar
  5. [5]
    Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 1994, 57, 603–649.CrossRefGoogle Scholar
  6. [6]
    Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.CrossRefGoogle Scholar
  7. [7]
    Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.CrossRefGoogle Scholar
  8. [8]
    Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon- Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.CrossRefGoogle Scholar
  9. [9]
    Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 2012, 338, 1452–1455.CrossRefGoogle Scholar
  10. [10]
    Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.CrossRefGoogle Scholar
  11. [11]
    Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.CrossRefGoogle Scholar
  12. [12]
    Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.CrossRefGoogle Scholar
  13. [13]
    Tao, F.; Dag, S.; Wang, L. W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850–853.CrossRefGoogle Scholar
  14. [14]
    Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.CrossRefGoogle Scholar
  15. [15]
    Jacobsen, C. J. H.; Dahl, S.; Hansen, P. L.; Tornqvist, E.; Jensen, L.; Topsøe, H.; Prip, D. V.; Møenshaug, P. B.; Chorkendorff, I. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A: Chem. 2000, 163, 19–26.CrossRefGoogle Scholar
  16. [16]
    Kalamaras, C. M.; Americanou, S.; Efstathiou, A. M. “Redox” vs. “associative formate with–OH group regeneration” WGS reaction mechanism on Pt/CeO2: Effect of platinum particle size. J. Catal. 2011, 279, 287–300.CrossRefGoogle Scholar
  17. [17]
    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420.CrossRefGoogle Scholar
  18. [18]
    Goel, S.; Wu, Z. J.; Zones, S. I.; Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 2012, 134, 17688–17695.CrossRefGoogle Scholar
  19. [19]
    Liu, Y. L.; Tang, Z. Y. Multifunctional Nanoparticle@MOF core–shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.CrossRefGoogle Scholar
  20. [20]
    Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater., 2017, 29, 1703614.CrossRefGoogle Scholar
  21. [21]
    Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.CrossRefGoogle Scholar
  22. [22]
    Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z. P.; Weiss, N. O.; Zhong, X.; Ding, M. N.; Lee, C.; Huang, Y.; Duan, X. F. Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. ACS Nano 2015, 9, 3044–3049.CrossRefGoogle Scholar
  23. [23]
    Chen, Y. Z.; Zhou, Y. X.; Wang, H. W.; Lu, J. L.; Uchida, T.; Xu, Q.; Yu, S. H.; Jiang, H. L. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host–guest cooperation and bimetallic synergy in catalysis. ACS Catal. 2015, 5, 2062–2069.CrossRefGoogle Scholar
  24. [24]
    Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.CrossRefGoogle Scholar
  25. [25]
    Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.CrossRefGoogle Scholar
  26. [26]
    Li, X. L.; Zhang, B. Y.; Tang, L. L.; Goh, T. W.; Qi, S. Y.; Volkov, A.; Pei, Y. C.; Qi, Z. Y.; Tsung, C.-K.; Stanley, L. et al. Cooperative multifunctional catalysts for nitrone synthesis: Platinum nanoclusters in amine-functionalized metal–organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16371–16375.CrossRefGoogle Scholar
  27. [27]
    Li, X. L.; Goh, T. W.; Li, L.; Xiao, C. X.; Guo, Z. Y.; Zeng, X. C.; Huang, W. Y. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal–organic frameworks. ACS Catal. 2016, 6, 3461–3468.CrossRefGoogle Scholar
  28. [28]
    Li, X. L.; Guo, Z. Y.; Xiao, C. X.; Goh, T. W.; Tesfagaber, D.; Huang, W. Y. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks. ACS Catal. 2014, 4, 3490–3497.CrossRefGoogle Scholar
  29. [29]
    Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt Nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.CrossRefGoogle Scholar
  30. [30]
    Boisen, A.; Dahl, S.; Nørskov, J. K.; Christensen, C. H. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 2005, 230, 309–312.CrossRefGoogle Scholar
  31. [31]
    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalatebased solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.CrossRefGoogle Scholar
  32. [32]
    Yin, S. F.; Xu, B. Q.; Zhou, X. P.; Au, C. T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A: Gen. 2004, 277, 1–9.CrossRefGoogle Scholar
  33. [33]
    Aika, K.; Ohya, A.; Ozaki, A.; Inoue, Y.; Yasumori, I. Support and promoter effect of ruthenium catalyst: II. Ruthenium/alkaline earth catalyst for activation of dinitrogen. J. Catal. 1985, 92, 305–311.CrossRefGoogle Scholar
  34. [34]
    Aika, K.; Takano, T.; Murata, S. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis: 3. A magnesiasupported ruthenium catalyst. J. Catal. 1992, 136, 126–140.CrossRefGoogle Scholar
  35. [35]
    Kubota, J.; Aika, K. Infrared studies of adsorbed dinitrogen on supported ruthenium catalysts for ammonia synthesis: Effects of the alumina and magnesia supports and the cesium compound promoter. J. Phys. Chem. 1994, 98, 11293–11300.CrossRefGoogle Scholar
  36. [36]
    Larichev, Y. V. Valence state study of supported ruthenium Ru/MgO catalysts. J. Phys. Chem. C 2008, 112, 14776–14780.CrossRefGoogle Scholar
  37. [37]
    Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.CrossRefGoogle Scholar
  38. [38]
    Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.CrossRefGoogle Scholar
  39. [39]
    Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.CrossRefGoogle Scholar
  40. [40]
    Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve lowtemperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.Google Scholar
  41. [41]
    Rosowski, F.; Hornung, A.; Hinrichsen, O.; Herein, D.; Muhler, M.; Ertl, G. Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Appl. Catal. A: Gen. 1997, 151, 443–460.CrossRefGoogle Scholar
  42. [42]
    Rossetti, I.; Sordelli, L.; Ghigna, P.; Pin, S.; Scavini, M.; Forni, L. EXAFS−XANES evidence of in situ cesium reduction in Cs−Ru/C catalysts for ammonia synthesis. Inorg. Chem. 2011, 50, 3757–3765.CrossRefGoogle Scholar
  43. [43]
    Larichev, Y. V. Effect of Cs+ promoter in Ru/MgO catalysts. J. Phys. Chem. C 2011, 115, 631–635.CrossRefGoogle Scholar
  44. [44]
    Gao, Y.; Bai, G.; Liang, Y.; Dunham, G. C.; Chambers, S. A. Structure and surface morphology of highly conductive RuO2 films grown on MgO by oxygen-plasma-assisted molecular beam epitaxy. J. Mater. Res. 1997, 12, 1844–1849.CrossRefGoogle Scholar
  45. [45]
    Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.CrossRefGoogle Scholar
  46. [46]
    Liu, H. Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese J. Catal. 2014, 35, 1619–1640.CrossRefGoogle Scholar
  47. [47]
    Choudhary, T. V.; Sivadinarayana, C.; Goodman, D. W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201.CrossRefGoogle Scholar
  48. [48]
    Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.CrossRefGoogle Scholar
  49. [49]
    Hayashi, F.; Toda, Y.; Kanie, Y.; Kitano, M.; Inoue, Y.; Yokoyama, T.; Hara, M.; Hosono, H. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e. Chem. Sci. 2013, 4, 3124–3130.CrossRefGoogle Scholar
  50. [50]
    García-Bordejé, E.; Armenise, S.; Roldán, L. Toward practical application of H2 generation from ammonia decomposition guided by rational catalyst design. Catal. Rev. 2014, 56, 220–237.CrossRefGoogle Scholar
  51. [51]
    Guo, J. P.; Wang, P. K.; Wu, G. T.; Wu, A. A.; Hu, D. Q.; Xiong, Z. T.; Wang, J. H.; Yu, P.; Chang, F.; Chen, Z. et al. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. Angew. Chem., Int. Ed. 2015, 54, 2950–2954.CrossRefGoogle Scholar
  52. [52]
    Kowalczyk, Z.; Sentek, J.; Jodzis, S.; Mizera, E.; Góralski, J.; Paryjczak, T.; Diduszko, R. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon. Catal. Lett. 1997, 45, 65–72.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinpeng Li
    • 1
  • Weiyang Wang
    • 1
  • Wenxing Chen
    • 1
  • Qinmei Gong
    • 2
  • Jun Luo
    • 3
  • Ruoqian Lin
    • 4
  • Huolin Xin
    • 4
  • Hui Zhang
    • 2
  • Dingsheng Wang
    • 1
  • Qing Peng
    • 1
  • Wei Zhu
    • 1
  • Chen Chen
    • 1
  • Yadong Li
    • 1
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.The Center of New Energy Materials and Technology, College of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduChina
  3. 3.Center for Electron MicroscopyTianjin University of TechnologyTianjinChina
  4. 4.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations