Advertisement

LiF@SiO2 nanocapsules for controlled lithium release and osteoarthritis treatment

  • Trever Todd
  • Zhenhui Lu
  • Jinmin Zhao
  • Benjamin Cline
  • Weizhong Zhang
  • Hongmin Chen
  • Anil Kumar
  • Wen Jiang
  • Franklin West
  • Samuel Franklin
  • Li Zheng
  • Jin Xie
Research Article
  • 71 Downloads

Abstract

Electrolytes can be taken orally or intravenously as supplements or thera-peutics. However, their therapeutic window may exceed the serum toxicitythreshold, making systemic delivery a poor option. Local injection is also notadequate due to rapid diffusion of electrolytes. Here, we solved this issue witha nanocapsule technology, comprising an electrolyte nanocrystal as the drugfilling and a silica sheath to regulate drug release rates. In particular, weprepared LiF@SiO2nanocapsules and investigated their potential as a deliverysystem for lithium, which was shown in recent studies to be an effectivetherapeutic agent for osteoarthritis (OA). We demonstrated that LiF@SiO2can extend lithium release time from minutes to more than 60 h. After intra-articular (i.a.) injection into a rat OA model, the nanocapsules reduced theOsteoarthritis Research Society International (OARSI) score by 71% in 8 weekswhile inducing no systemic toxicity. Our study opens new doors for improveddelivery of electrolyte therapeutics, which have rarely been studied in the past.

Keywords

osteoarthritis controlled release hyaluronic acid lithium anti-inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by two National Institutes of Health grants (R01EB022596, J.X., and R01NS093314, F.W. and J.X.), one Congressionally Directed Medical Research Programs grant (CA140666, J.X.), one National Science Foundation grant (NSF1552617, J.X.), one University of Georgia-Georgia Regents University seed grant (J.X.), and one University of Georgia Postdoc Research Award grant (H.C.). We also thank the National Natural Science Fund of China (No. 81760326, L.Z.), the Distinguished Young Scholars Program of Guangxi Medical University (L.Z.), the Guangxi Science and Technology Major Project (Guike AA17204085, L.Z.), and the Guangxi Scientific Research and Technological Development Foundation (GuikeAB16450003, L.Z.).

Supplementary material

12274_2018_2061_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 2994 KB.

References

  1. [1]
    Cho, K.; Wang, X.; Nie, S. M.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.CrossRefGoogle Scholar
  2. [2]
    Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.CrossRefGoogle Scholar
  3. [3]
    Phiel, C. J.; Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 789–813.CrossRefGoogle Scholar
  4. [4]
    Corbella, B.; Vieta, E. Molecular targets of lithium action. Acta Neuropsychiatr. 2003, 15, 316–340.CrossRefGoogle Scholar
  5. [5]
    Ryves, W. J.; Harwood, A. J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 2001, 280, 720–725.CrossRefGoogle Scholar
  6. [6]
    Geddes, J. R.; Burgess, S.; Hawton, K.; Jamison, K.; Goodwin, G. M. Long-term lithium therapy for bipolar disorder: Systematic review and meta-analysis of randomized controlled trials. Am. J. Psychiat. 2004, 161, 217–222. 9CrossRefGoogle Scholar
  7. [7]
    Geller, B.; Luby, J. Child and adolescent bipolar disorder: A review of the past 10 years. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 1168–1176.CrossRefGoogle Scholar
  8. [8]
    Hui, W.; Litherland, G. J.; Jefferson, M.; Barter, M. J.; Elias, M. S.; Cawston, T. E.; Rowan, A. D.; Young, D. A. Lithium protects cartilage from cytokine-mediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology 2010, 49, 2043–2053.CrossRefGoogle Scholar
  9. [9]
    Minashima, T.; Zhang, Y.; Lee, Y.; Kirsch, T. Lithium protects against cartilage degradation in osteoarthritis. Arthritis Rheumatol. 2014, 66, 1228–1236.CrossRefGoogle Scholar
  10. [10]
    Thompson, C. L.; Wiles, A.; Poole, C. A.; Knight, M. M. Lithium chloride modulates chondrocyte primary cilia and inhibits hedgehog signaling. Faseb J. 2016, 30, 716–726.CrossRefGoogle Scholar
  11. [11]
    Lawrence, R. C.; Felson, D. T.; Helmick, C. G.; Arnold, L. M.; Choi, H.; Deyo, R. A.; Gabriel, S.; Hirsch, R.; Hochberg, M. C.; Hunder, G. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the united states. Arthritis Rheum. 2008, 58, 26–35.CrossRefGoogle Scholar
  12. [12]
    Hunter, D. J.; Neogi, T.; Hochberg, M. C. Quality of osteoarthritis management and the need for reform in the US. Arthrit. Care Res. 2011, 63, 31–38.CrossRefGoogle Scholar
  13. [13]
    Thompson, C. L.; Yasmin, H.; Varone, A.; Wiles, A.; Poole, C. A.; Knight, M. M. Lithium chloride prevents interleukin-1ß induced cartilage degradation and loss of mechanical properties. J. Orthop. Res. 2015, 33, 1552–1559.CrossRefGoogle Scholar
  14. [14]
    Oruch, R.; Elderbi, M. A.; Khattab, H. A.; Pryme, I. F.; Lund, A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014, 740, 464–473.CrossRefGoogle Scholar
  15. [15]
    Finley, P. R.; Warner, M. D.; Peabody, C. A. Clinical relevance of drug interactions with lithium. Clin. Pharmacokinet. 1995, 29, 172–191.CrossRefGoogle Scholar
  16. [16]
    Timmer, R. T.; Sands, J. M. Lithium intoxication. J. Am. Soc. Nephrol. 1999, 10, 666–674.Google Scholar
  17. [17]
    Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.CrossRefGoogle Scholar
  18. [18]
    Gerwin, N.; Hops, C.; Lucke, A. Intra-articular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 2006, 58, 226–242.CrossRefGoogle Scholar
  19. [19]
    Zhang, W.; Ouyang, H. W.; Dass, C. R.; Xu, J. K. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016, 4, 15040.CrossRefGoogle Scholar
  20. [20]
    Brown, T. J.; Laurent, U. B.; Fraser, J. R. Turnover of hyaluronan in synovial joints: Elimination of labelled hyaluronan from the knee joint of the rabbit. Exp. Physiol. 1991, 76, 125–134.CrossRefGoogle Scholar
  21. [21]
    Schaafsma, G. Calcium in extracellular fluid: Homeostasis. In Calcium in Human Biology. Nordin, B. E. C., Eds.; Springer: London, 1988; pp 241–259.CrossRefGoogle Scholar
  22. [22]
    Cox, S. W.; Eley, B. M.; Kiili, M.; Asikainen, A.; Tervahartiala, T.; Sorsa, T. Collagen degradation by interleukin-1ß-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases. OralDis. 2006, 12, 34–40.Google Scholar
  23. [23]
    Ning, B.; Wang, P.; Pei X. H.; Kang, Y. Q.; Song, J.; Wang, D. H.; Zhang, W. L.; Ma, R. X. Dual function of ß-catenin in articular cartilage growthand degeneration at different stages of postnatal cartilage development. Int. Orthop. 2012, 36, 655–664.CrossRefGoogle Scholar
  24. [24]
    Marshall, K. W.; Chan, A. D. M. Arthroscopic anterior cruciate ligament transection induces canine osteoarthritis. J. Rheumatol. 1996, 23, 338–343.Google Scholar
  25. [25]
    Altman, R. D.; Manjoo, A.; Fierlinger, A.; Niazi, F.; Nicholls, M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskel. Dis. 2015, 16, 321.CrossRefGoogle Scholar
  26. [26]
    Young, W. Review of lithium effects on brain and blood. Cell Transplant. 2009, 18, 951–975.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Trever Todd
    • 1
  • Zhenhui Lu
    • 2
  • Jinmin Zhao
    • 2
  • Benjamin Cline
    • 1
  • Weizhong Zhang
    • 1
  • Hongmin Chen
    • 1
    • 3
  • Anil Kumar
    • 1
  • Wen Jiang
    • 1
  • Franklin West
    • 4
  • Samuel Franklin
    • 5
  • Li Zheng
    • 2
  • Jin Xie
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthens, GeorgiaUSA
  2. 2.Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Centerfor Biomedicine, Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
  3. 3.Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and MolecularDiagnostics, School of Public HealthXiamen UniversityXiamenChina
  4. 4.Animal Dairy ScienceUniversity of GeorgiaAthens, GeorgiaUSA
  5. 5.Department of Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthens, GeorgiaUSA

Personalised recommendations