Nano Research

, Volume 11, Issue 9, pp 4744–4758 | Cite as

Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots

  • Jiao Yang
  • Wei Liu
  • Hao Niu
  • Kui Cheng
  • Ke Ye
  • Kai Zhu
  • Guiling Wang
  • Dianxue Cao
  • Jun Yan
Research Article


NiMoO4 has attracted intensive attention as one of the promising ternary metal oxides because of its high specific capacitance and electrical conductivity compared to traditional transition-metal oxides. In this study, NiMoO4 nanorods uniformly decorated on graphene nanosheets (G-NiMoO4) are synthesized through a facile hydrothermal method. The prepared G-NiMoO4 composite exhibits a high specific capacitance of 714 C·g−1 at 1 A·g−1 and an excellent rate capability, with a retention ratio of 57.7% even at 100 A·g−1. An asymmetric supercapacitor (ASC) fabricated with the G-NiMoO4 composite as the positive electrode and Fe2O3 quantum dot-decorated graphene (G-Fe2O3-QDs) as the negative electrode delivers an ultrahigh energy density of 130 Wh·kg−1, which is comparable to those of previously reported aqueous NiMoO4-based ASCs. Even when the power density reaches 33.6 kW·kg−1, an energy density of 56 Wh·kg−1 can be maintained. The ASC device exhibits outstanding cycling stability, with a capacitance retention of 113% after 40,000 cycles. These results indicate that the G-NiMoO4 composite is a promising candidate for ASCs with ultrahigh energy density and excellent cycling stability. Moreover, the present work provides an exciting guideline for the future design of high-performance supercapacitors for industrial and consumer applications via the simultaneous use of various pseudocapacitive materials with suitable potential windows as the positive and negative electrodes.


NiMoO4 graphene supercapacitor energy density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work is supported by the financial support from the National Natural Science Foundation of China (No. 21571040), the Young Top-notch Talent for Ten Thousand Talent Program, Natural Science Foundation of Heilongjiang Province (No. QC2017007) and Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2018_2059_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 1762 KB.


  1. [1]
    Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.CrossRefGoogle Scholar
  2. [2]
    Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 2011, 4, 2826–2830.CrossRefGoogle Scholar
  3. [3]
    Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.CrossRefGoogle Scholar
  4. [4]
    Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in designand fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.CrossRefGoogle Scholar
  5. [5]
    Li, S. F.; Yu, C.; Yang, J.; Zhao, C. T.; Zhang, M. D.; Huang, H. W.; Liu, Z. B.; Guo, W.; Qiu, J. S. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high- energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 2017, 10, 1958–1965.CrossRefGoogle Scholar
  6. [6]
    Xia, H.; Hong, C. Y.; Li, B.; Zhao, B.; Lin, Z. X.; Zheng, M. B.; Savilov, S. V.; Aldoshin, S. M. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 2015, 25, 627–635.CrossRefGoogle Scholar
  7. [7]
    Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.CrossRefGoogle Scholar
  8. [8]
    Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.CrossRefGoogle Scholar
  9. [9]
    Wang, Y. G.; Xia, Y. Y. Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 2013, 25, 5336–5342.CrossRefGoogle Scholar
  10. [10]
    Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.CrossRefGoogle Scholar
  11. [11]
    Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem., Int. Ed. 2012, 51, 9994–10024.CrossRefGoogle Scholar
  12. [12]
    Qu, Q. T.; Yang, S. B.; Feng, X. L. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 2011, 23, 5574–5580.CrossRefGoogle Scholar
  13. [13]
    Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955.CrossRefGoogle Scholar
  14. [14]
    Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.CrossRefGoogle Scholar
  15. [15]
    Li, Y.; Kang, Z.; Yan, X. Q.; Cao, S. Y.; Li, M. H.; Liu, Y. C.; Liu, S.; Sun, Y. H.; Zheng, X.; Zhang, Y. A facile method for the preparation of three-dimensional cnt sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22559–22567.CrossRefGoogle Scholar
  16. [16]
    Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.CrossRefGoogle Scholar
  17. [17]
    Li, Y.; Yan, X. Q.; Zheng, X.; Si, H. N.; Li, M. H.; Liu, Y. C.; Sun, Y. H.; Jiang, Y. R.; Zhang, Y. Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/ wearable energy storage. J. Mater. Chem. A 2016, 4, 17704–17710.CrossRefGoogle Scholar
  18. [18]
    Yu, Z. N.; Duong, B.; Abbitt, D.; Thomas, J. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 2013, 25, 3302–3306.CrossRefGoogle Scholar
  19. [19]
    Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. Insertion- type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619–11635.CrossRefGoogle Scholar
  20. [20]
    Huang, L.; Zhang, W.; Xiang, J. W.; Xu, H. H.; Li, G. L.; Huang, Y. H. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high- performance supercapacitors. Sci. Rep. 2016, 6, 31465.CrossRefGoogle Scholar
  21. [21]
    Wu, Z. B.; Zhu, Y. R.; Ji, X. B. NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2014, 2, 14759–14772.CrossRefGoogle Scholar
  22. [22]
    Chen, H. C.; Jiang, J. J.; Zhang, L.; Qi, T.; Xia, D. D.; Wan, H. Z. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 2014, 248, 28–36.CrossRefGoogle Scholar
  23. [23]
    Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3–xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.CrossRefGoogle Scholar
  24. [24]
    Wang, X.; Liu, W. S.; Lu, X. H.; Lee, P. S. Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J. Mater. Chem. 2012, 22, 23114–23119.CrossRefGoogle Scholar
  25. [25]
    Liu, M.-C.; Kong, L.-B.; Lu, C.; Ma, X.-J.; Li, X.-M.; Luo, Y.-C.; Kang, L. Design and synthesis of CoMoO4–NiMoO4· xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A 2013, 1, 1380–1387.CrossRefGoogle Scholar
  26. [26]
    Hong, W.; Wang, J. Q.; Gong, P. W.; Sun, J. F.; Niu, L. Y.; Yang, Z. G.; Wang, Z. F.; Yang, S. R. Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application. J. Power Sources 2014, 270, 516–525.CrossRefGoogle Scholar
  27. [27]
    Zhang, P.; Zhou, J. Y.; Chen, W. J.; Zhao, Y. Y.; Mu, X. M.; Zhang, Z. X.; Pan, X. J.; Xie, E. Q. Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: The case of NiCo2O4@ NiMoO4 hierarchical nanostructures. Chem. Eng. J. 2017, 307, 687–695.CrossRefGoogle Scholar
  28. [28]
    Guo, D.; Luo, Y. Z.; Yu, X. Z.; Li, Q. H.; Wang, T. H. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 2014, 8, 174–182.CrossRefGoogle Scholar
  29. [29]
    Vidyadharan, B.; Aziz, R. A.; Misnon, I. I.; Anil Kumar, G. M.; Ismail, J.; Yusoff, M. M.; Jose, R. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J. Power Sources 2014, 270, 526–535.CrossRefGoogle Scholar
  30. [30]
    Li, Y. F.; Jian, J. M.; Fan, Y.; Wang, H.; Yu, L.; Cheng, G.; Zhou, J. L.; Sun, M. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv. 2016, 6, 69627–69633.CrossRefGoogle Scholar
  31. [31]
    Huang, Z. Y.; Zhang, Z.; Qi, X.; Ren, X. H.; Xu, G. H.; Wan, P. B.; Sun, X. M.; Zhang, H. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 2016, 8, 13273–13279.CrossRefGoogle Scholar
  32. [32]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  33. [33]
    Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.CrossRefGoogle Scholar
  34. [34]
    Yang, M.; Lee, K. G.; Lee, S. J.; Lee, S. B.; Han, Y. K.; Choi, B. G. Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 22364–22371.CrossRefGoogle Scholar
  35. [35]
    Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.CrossRefGoogle Scholar
  36. [36]
    Huang, P. P.; Cao, C. Y.; Sun, Y. B.; Yang, S. L.; Wei, F.; Song, W. G. One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. J. Mater. Chem. A 2015, 3, 10858–10863.CrossRefGoogle Scholar
  37. [37]
    Chen, X. A.; Chen, X. H.; Zhang, F. Q.; Yang, Z.; Huang, S. M. One-pot hydrothermal synthesis of reduced graphene oxide/ carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 2013, 243, 555–561.CrossRefGoogle Scholar
  38. [38]
    Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 2014, 245, 101–106.CrossRefGoogle Scholar
  39. [39]
    Zhang, Z. Y.; Xiao, F.; Guo, Y. L.; Wang, S.; Liu, Y. Q. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227–2233.CrossRefGoogle Scholar
  40. [40]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  41. [41]
    Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623–1629.CrossRefGoogle Scholar
  42. [42]
    Yan, J.; Wang, Q.; Wei, T.; Jiang, L. L.; Zhang, M. L.; Jing, X. Y.; Fan, Z. J. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 2014, 8, 4720–4729.CrossRefGoogle Scholar
  43. [43]
    Chi, K.; Zhang, Z. Y.; Lv, Q. Y.; Xie, C. Y.; Xiao, J.; Xiao, F.; Wang, S. Well-ordered oxygen-deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: Toward flexible asymmetric supercapacitors with enhanced capacitive properties. ACS Appl. Mater. Interfaces 2017, 9, 6044–6053.CrossRefGoogle Scholar
  44. [44]
    Chu, Y. T.; Xiong, S. L.; Li, B. S.; Qian, Y. T.; Xi, B. J. Designed formation of MnO2@NiO/NiMoO4 nanowires@nanosheets hierarchical structures with enhanced pseudocapacitive properties. ChemElectroChem 2016, 3, 1347–1353.CrossRefGoogle Scholar
  45. [45]
    Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.CrossRefGoogle Scholar
  46. [46]
    Shan, D. D.; Yang, J.; Liu, W.; Yan, J.; Fan, Z. J. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 13589–13602.CrossRefGoogle Scholar
  47. [47]
    Jiang, Y. T.; Yan, J.; Wu, X. L.; Shan, D. D.; Zhou, Q. H.; Jiang, L. L.; Yang, D. R.; Fan, Z. J. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J. Power Sources 2016, 307, 190–198.CrossRefGoogle Scholar
  48. [48]
    Cai, D. P.; Wang, D. D.; Liu, B.; Wang, Y. R.; Liu, Y.; Wang, L. L.; Li, H.; Huang, H.; Li, Q. H.; Wang, T. H. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910.CrossRefGoogle Scholar
  49. [49]
    Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Wei, Q. L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun 2017, 8, 14264.CrossRefGoogle Scholar
  50. [50]
    Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/ graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.CrossRefGoogle Scholar
  51. [51]
    Liu, W.; Niu, H.; Yang, J.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 2018, 30, 1055–1068.CrossRefGoogle Scholar
  52. [52]
    Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fan, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494–11502.CrossRefGoogle Scholar
  53. [53]
    Fu, C. P.; Mahadevegowda, A.; Grant, P. S. Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 2016, 4, 2597–2604.CrossRefGoogle Scholar
  54. [54]
    Yin, Z. X.; Chen, Y. J.; Zhao, Y.; Li, C. Y.; Zhu, C. L.; Zhang, X. T. Hierarchical nanosheet-based CoMoO4–NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 22750–22758.CrossRefGoogle Scholar
  55. [55]
    Liu, T.; Chai, H.; Jia, D. Z.; Su, Y.; Wang, T.; Zhou, W. Y. Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/ reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 2015, 180, 998–1006.CrossRefGoogle Scholar
  56. [56]
    Wang, C. S.; Xi, Y.; Hu, C. G.; Dai, S. G.; Wang, M. J.; Cheng, L.; Xu, W. N.; Wang, G.; Li, W. L. β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitors. RSC Adv. 2015, 5, 107098–107104.CrossRefGoogle Scholar
  57. [57]
    Qing, C.; Liu, Y.; Sun, X. D.; Ouyang, X. X.; Wang, H.; Sun, D. M.; Wang, B. X.; Zhou, Q.; Xu, L. F.; Tang, Y. W. Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitors. RSC Adv. 2016, 6, 67785–67793.CrossRefGoogle Scholar
  58. [58]
    Wang, J.; Zhang, L. P.; Liu, X. S.; Zhang, X.; Tian, Y. L.; Liu, X. X.; Zhao, J. P.; Li, Y. Assembly of flexible CoMoO4@ NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci. Rep. 2017, 7, 41088.CrossRefGoogle Scholar
  59. [59]
    Li, J.; Liu, K.; Gao, X.; Yao, B.; Huo, K. F.; Cheng, Y. L.; Cheng, X. F.; Chen, D. C.; Wang, B.; Sun, W. M. et al. Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Interfaces 2015, 7, 24622–24628.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiao Yang
    • 1
  • Wei Liu
    • 1
  • Hao Niu
    • 1
  • Kui Cheng
    • 1
  • Ke Ye
    • 1
  • Kai Zhu
    • 1
  • Guiling Wang
    • 1
  • Dianxue Cao
    • 1
  • Jun Yan
    • 1
  1. 1.Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations