Nano Research

, Volume 11, Issue 9, pp 4735–4743 | Cite as

Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration

  • Yousong Liu
  • Shuxin Ouyang
  • Wencan Guo
  • Hehou Zong
  • Xudong Cui
  • Zhong Jin
  • Guangcheng Yang
Research Article


An energetic-material (NaN3) deflagration method for preparing N- and Ti3+-codoped TiO2 nanosheets (NT–TiO2) was developed. In this method, N radicals filled the crystal lattice, and Na clusters captured partial O from TiO2. The deflagration process was fast and facile and can be completed within < 1 s after ignition. The obtained NT–TiO2 exhibited rough surfaces with nanopits and nanoholes. The doping concentration can be regulated by controlling the NaN3 addition. The NT–TiO2 samples showed significant enhancements in the visible-light absorption and photoelectric response. The simultaneously produced N radicals and Na clusters from NaN3 deflagration served as N sources and reduction agents, respectively. Additionally, the high deflagration temperature/pressure improved the reactivity of N radicals and Na clusters. Thus, the present NaN3 deflagration method was demonstrated as an ultrafast and effective approach to fabricate NT–TiO2 with a visible-light response. The proposed NaN3 deflagration method allows the ultrafast synthesis of new functional materials via the efficient deflagration of energetic materials.


NaN3 deflagration N radicals and Na nanoclusters ultrafast doping Ti3+ codoped TiO2 visible-light response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 11272292, 11372288, 11502242, 51402269 and 11502247), Development Foundation of CAEP (No. 2014B0302041), the Applied Basic Research Program of Sichuan Province (No. 2015JY0229), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No. 14zxfk08) and China Postdoctoral Science Foundation (No. 2016M592702).

Supplementary material

12274_2018_2058_MOESM1_ESM.avi (1007 kb)
Supplementary material, approximately 0.98 MB.
12274_2018_2058_MOESM2_ESM.avi (832 kb)
Supplementary material, approximately 831 KB.
12274_2018_2058_MOESM3_ESM.avi (12.1 mb)
Supplementary material, approximately 12.0 MB.
12274_2018_2058_MOESM4_ESM.pdf (2.8 mb)
Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration


  1. [1]
    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.CrossRefGoogle Scholar
  2. [2]
    Feng, X. J.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew. Chem., Int. Ed. 2012, 51, 2727–2730.CrossRefGoogle Scholar
  3. [3]
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  4. [4]
    Subbiah, G.; Premanathan, M.; Kim, S. J.; Krishnamoorthy, K.; Jeyasubramanian, K. Preparation of TiO2 nanopaint using ball milling process and investigation on its antibacterial properties. Mater. Express 2014, 4, 393–399.CrossRefGoogle Scholar
  5. [5]
    Moon, H. G.; Shim, Y. S.; Jang, H. W.; Kim, J. S.; Choi, K. J.; Kang, C. Y.; Choi, J. W.; Park, H. H.; Yoon, S. J. Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres. Sensor. Actuat. B-Chem. 2010, 149, 116–121.CrossRefGoogle Scholar
  6. [6]
    Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energ. Environ. Sci. 2015, 8, 1480–1483.CrossRefGoogle Scholar
  7. [7]
    Guan, B. Y.; Yu, L.; Li, J.; Lou, X. W. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci. Adv. 2016, 2, e1501554.CrossRefGoogle Scholar
  8. [8]
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  9. [9]
    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  10. [10]
    Lin, T. Q.; Yang, C. Y.; Wang, Z.; Yin, H.; Lü, X. J.; Huang, F. Q.; Lin, J. H.; Xie, X. M.; Jiang, M. H. Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 2014, 7, 967–972.CrossRefGoogle Scholar
  11. [11]
    Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539–3544.CrossRefGoogle Scholar
  12. [12]
    Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: Cocatalyst-free open-circuit hydrogen generation. Nano Lett. 2014, 14, 3309–3313.CrossRefGoogle Scholar
  13. [13]
    Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 2012, 134, 3659–3662.CrossRefGoogle Scholar
  14. [14]
    Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders. J. Phys. Chem. B 2003, 107, 5483–5486.CrossRefGoogle Scholar
  15. [15]
    Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.CrossRefGoogle Scholar
  16. [16]
    Jiang, Z.; Yang, F.; Luo, N. J.; Chu, B. T. T.; Sun, D. Y.; Shi, H. H.; Xiao, T. C.; Edwards, P. P. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. Chem. Commun. 2008, 6372–6374.Google Scholar
  17. [17]
    Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 2006, 128, 15666–15671.CrossRefGoogle Scholar
  18. [18]
    Antony, R. P.; Mathews, T.; Panda, K.; Sundaravel, B.; Dash, S.; Tyagi, A. K. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. J. Phys. Chem. C 2012, 116, 16740–16746.CrossRefGoogle Scholar
  19. [19]
    Shi, N.; Li, X. H.; Fan, T. X.; Zhou, H.; Ding, J.; Zhang, D.; Zhu, H. X. Biogenic N-I-codoped TiO2 photocatalyst derived from kelp for efficient dye degradation. Energy Environ. Sci. 2011, 4, 172–180.CrossRefGoogle Scholar
  20. [20]
    Zheng, Z. K.; Huang, B. B.; Meng, X. D.; Wang, J. P.; Wang, S. Y.; Lou, Z. Z.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem. Commun. 2013, 49, 868–870.CrossRefGoogle Scholar
  21. [21]
    Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 124, 6327–6330.CrossRefGoogle Scholar
  22. [22]
    Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007–3014.CrossRefGoogle Scholar
  23. [23]
    Fang, W. Z.; Xing, M. Y.; Zhang, J. L. A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B: Environ. 2014, 160–161, 240–246.CrossRefGoogle Scholar
  24. [24]
    Zhou, X. M.; Häublein, V.; Liu, N.; Nguyen, N. T.; Zolnhofer, E. M.; Tsuchiya, H.; Killian, M. S.; Meyer, K.; Frey, L.; Schmuki, P. TiO2 nanotubes: Nitrogen-ion implantation at low dose provides noble-metal-free photocatalytic H2-evolution activity. Angew. Chem., Int. Ed. 2016, 55, 3763–3767.CrossRefGoogle Scholar
  25. [25]
    Pan, S. S.; Liu, X. L.; Guo, M.; Yu, S. F.; Huang, H. T.; Fan, H. T.; Li, G. H. Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J. Mater. Chem. A 2015, 3, 11437–11443.CrossRefGoogle Scholar
  26. [26]
    Yang, Y. C.; Zhang, T.; Le, L.; Ruan, X. F.; Fang, P. F.; Pan, C. X.; Xiong, R.; Shi, J.; Wei, J. H. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity. Sci. Rep. 2014, 4, 7045.CrossRefGoogle Scholar
  27. [27]
    Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305.CrossRefGoogle Scholar
  28. [28]
    Sathish, M.; Viswanathan, B.; Viswanath, R. P.; Gopinath, C. S. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 2005, 17, 6349–6353.CrossRefGoogle Scholar
  29. [29]
    Liu, G.; Yin, L. C.; Wang, J. Q.; Niu, P.; Zhen, C.; Xie, Y. P.; Cheng, H. M. A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 2012, 5, 9603–9610.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina
  2. 2.TU-NIMS Joint Research Center, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina
  4. 4.Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations