Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals

  • Gi-Cheol Son
  • Deuk-Kyu Hwang
  • Jaewon Jang
  • Sang-Soo Chee
  • Kyusang Cho
  • Jae-Min Myoung
  • Moon-Ho Ham
Research Article


The corrosion of metals can be induced by different environmental and operational conditions, and protecting metals from corrosion is a serious concern in many applications. The development of new materials and/or technologies to improve the efficiency of anti-corrosion coatings has attracted renewed interest. In this study, we develop a protective coating composed of a bilayer structure of reduced graphene oxide (RGO)/graphene oxide (GO) applied to Cu plates by spray-coating and subsequent annealing. The annealing of the GO/Cu plates at 120 °C produces a bilayer structure of RGO/GO by the partial reduction of the spray-coated GO layer. This induces superior corrosion resistance and adhesion strength compared to those of GO/Cu and RGO/Cu plates because of the hydrophobic nature of the RGO surface exposed to the surroundings and the formation of Cu–O bonds with the O-based functional groups of GO. This approach provides a viable and scalable route for using graphene coatings to protect metal surfaces from corrosion.


graphene metal surface coating corrosion solution process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the 2nd phase of the Fundamental R&D Programs for Core Technology of Materials funded by Ministry of Trade, Industry and Energy (MOTIE) (2015–2016), Future Semiconductor Device Technology Development Program (No. 10044868) funded by Ministry of Trade, Industry and Energy (MOTIE) and Korea Semiconductor Research Consortium (KSRC), Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017M3D1A1040828), Nano·Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (No. 2017M3A7B4052798), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01058982), and GIST Research Institute (GRI) grant funded by the GIST.

Supplementary material

12274_2018_2056_MOESM1_ESM.pdf (709 kb)
Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals


  1. [1]
    Gray, J. E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloy. Compd. 2002, 336, 88–113.CrossRefGoogle Scholar
  2. [2]
    Tallman, D. E.; Spinks, G.; Dominis, A.; Wallace, G. G. Electroactive conducting polymers for corrosion control. J. Solid State Electrochem. 2002, 6, 73–84.CrossRefGoogle Scholar
  3. [3]
    Araujo, W. S.; Margarit, I. C. P.; Ferreira, M.; Mattos, O. R.; Neto, P. L. Undoped polyaniline anticorrosive properties. Electrochim. Acta 2001, 46, 1307–1312.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  5. [5]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  6. [6]
    Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198–205.CrossRefGoogle Scholar
  7. [7]
    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S.-Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.CrossRefGoogle Scholar
  8. [8]
    Aneja, K. S.; Bohm, S.; Khanna, A. S.; Bohm, H. L. M. Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 2015, 7, 17879–17888.CrossRefGoogle Scholar
  9. [9]
    Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108.CrossRefGoogle Scholar
  10. [10]
    Brownson, D. A. C.; Banks, C. E. The electrochemistry of CVD graphene: Progress and prospects. Phys. Chem. Chem. Phys. 2012, 14, 8264–8281.CrossRefGoogle Scholar
  11. [11]
    Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y. Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293–297.CrossRefGoogle Scholar
  12. [12]
    Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.CrossRefGoogle Scholar
  13. [13]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  14. [14]
    Kang, D.; Kwon, J. Y.; Cho, H.; Sim, J.-H.; Hwang, H. S.; Kim, C. S.; Kim, Y. J.; Ruoff, R. S.; Shin, H. S. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763–7769.CrossRefGoogle Scholar
  15. [15]
    Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.-K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.CrossRefGoogle Scholar
  16. [16]
    Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717.CrossRefGoogle Scholar
  17. [17]
    Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  18. [18]
    Jang, K.; Hwang, D.-K.; Auxilia, F. M.; Jang, J.; Song, H.; Oh, B.-Y.; Kim, Y.; Nam, J.; Park, J.-W.; Jeong, S. et al. Sub-10-nm Co3O4 nanoparticles/graphene composites as high-performance anodes for lithium storage. Chem. Eng. J. 2017, 309, 15–21.CrossRefGoogle Scholar
  19. [19]
    Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.CrossRefGoogle Scholar
  20. [20]
    Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.CrossRefGoogle Scholar
  21. [21]
    Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.CrossRefGoogle Scholar
  22. [22]
    Lin, L. X.; Wu, H. P.; Green, S. J.; Crompton, J.; Zhang, S. W.; Horsell, D. W. Formation of tunable graphene oxide coating with high adhesion. Phys. Chem. Chem. Phys. 2016, 18, 5086–5090.CrossRefGoogle Scholar
  23. [23]
    Khusnun, N. F.; Jalil, A. A.; Triwahyono, S.; Jusoh, N. W. C.; Johari, A.; Kidam, K. Interaction between copper and carbon nanotubes triggers their mutual role in the enhanced photodegradation of p-chloroaniline. Phys. Chem. Chem. Phys. 2016, 18, 12323–12331.CrossRefGoogle Scholar
  24. [24]
    Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gi-Cheol Son
    • 1
  • Deuk-Kyu Hwang
    • 3
  • Jaewon Jang
    • 1
  • Sang-Soo Chee
    • 1
  • Kyusang Cho
    • 1
  • Jae-Min Myoung
    • 3
  • Moon-Ho Ham
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Research Institute for Solar and Sustainable EnergiesGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  3. 3.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations