Skip to main content
Log in

Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in using carbon-supported K2PdIICl4/K4FeII(CN)6 cyanogel as a reaction precursor, generated through the substitution of two chloride ligands by the nitrogen ends of the cyanide ligands on the metal center. The inherent nature of cyanogels can effectively suppress the movement of Pd0 and Fe0 nuclei in the crystal, benefiting the formation of the intermetallic, which is otherwise challenging via traditional synthesis techniques. The ordered Pd3Fe/C catalyst exhibits excellent catalytic activity and good cycle stability for the formic acid oxidation (FAO) reaction relative to the properties of disordered Pd3Fe/C and commercial Pd/C catalysts, demonstrating that the ordered Pd3Fe/C is a promising replacement for commercial Pd-based catalysts. The outstanding performance can be ascribed to the full isolation of active sites in the ordered Pd3Fe structure and the modified electronic structure of the active components. This work provides an effective and novel route to obtain Pd-based intermetallic compounds with potential applications in a wide range of electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

    Article  Google Scholar 

  2. Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.

    Article  Google Scholar 

  3. Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.

    Article  Google Scholar 

  4. Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.

    Article  Google Scholar 

  5. Xu, H.; Ding, L. X.; Feng, J. X.; Li, G. R. Pt/Ni(OH)2-NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chem. Sci. 2015, 6, 6991–6998.

    Article  Google Scholar 

  6. Bin, D.; Yang, B. B.; Ren, F. F.; Zhang, K.; Yang, P.; Du, Y. K. Facile synthesis of PdNi nanowire networks supported on reduced graphene oxide with enhanced catalytic performance for formic acid oxidation. J. Mater. Chem. A 2015, 3, 14001–14006.

    Article  Google Scholar 

  7. Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.

    Article  Google Scholar 

  8. Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.

    Article  Google Scholar 

  9. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  Google Scholar 

  10. Ho, S. F.; Mendoza-Garcia, A.; Guo, S. J.; He, K.; Su, D.; Liu, S.; Metin, Ö.; Sun, S. H. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale 2014, 6, 6970–6973.

    Article  Google Scholar 

  11. Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132.

    Article  Google Scholar 

  12. Mahmood, A.; Saleem, F.; Lin, H. F.; Ni, B.; Wang, X. Crystallinity-induced shape evolution of Pt-Ag nanosheets from branched nanocrystals. Chem. Commun. 2016, 52, 10547–10550.

    Article  Google Scholar 

  13. Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small 2016, 12, 524–533.

    Article  Google Scholar 

  14. Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. "Raisin bun"-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.

    Article  Google Scholar 

  15. Sun, H. Y.; Guo, X.; Ye, W.; Kou, S. F.; Yang, J. Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res. 2016, 9, 1173–1181.

    Article  Google Scholar 

  16. Ha, S.; Larsen, R.; Masel, R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 2005, 144, 28–34.

    Article  Google Scholar 

  17. Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ö.; Sun, D. H.; More, K. L.; Sun, S. H. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012, 12, 1102–1106.

    Article  Google Scholar 

  18. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  19. Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.

    Article  Google Scholar 

  20. Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360–20376.

    Article  Google Scholar 

  21. Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

    Article  Google Scholar 

  22. Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich "active sites" as efficient catalysts for formic acid oxidation. Small, in press, DOI: 10.1002/smll.201703940.

  23. Xu, H.; Zhang, K.; Yan, B.; Wang, J.; Wang, C. Q.; Li, S. M.; Gu, Z. L.; Du, Y. K.; Yang, P. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 2017, 356, 27–35.

    Article  Google Scholar 

  24. Matin, M. A.; Jang, J. H.; Kwon, Y. U. PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 2014, 262, 356–363.

    Article  Google Scholar 

  25. Du, C. Y.; Chen, M.; Wang, W. G.; Yin, G. P.; Shi, P. F. Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid. Electrochem. Commun. 2010, 12, 843–846.

    Article  Google Scholar 

  26. Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinum-palladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem. Asian J. 2016, 11, 1939–1944.

    Article  Google Scholar 

  27. Chen, D.; Sun, P. C.; Liu, H.; Yang, J. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 2017, 5, 4421–4429.

    Article  Google Scholar 

  28. Saleem, F.; Ni, B.; Yong, Y.; Gu, L.; Wang, X. Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 2016, 12, 5261–5268.

    Article  Google Scholar 

  29. Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd-Cu nanocrystals and their tunable catalytic properties. Chem. Commun. 2014, 50, 4588–4591.

    Article  Google Scholar 

  30. McMillan, R. A.; Howard, J.; Zaluzec, N. J.; Kagawa, H. K.; Mogul, R.; Li, Y. F.; Paavola, C. D.; Trent, J. D. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 2005, 127, 2800–2801.

    Article  Google Scholar 

  31. Chai, J.; Li, F. H.; Hu, Y. W.; Zhang, Q. X.; Han, D. X.; Niu, L. Hollow flower-like aupd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. J. Mater. Chem. 2011, 21, 17922–17929.

    Article  Google Scholar 

  32. Tominaka, S.; Momma, T.; Osaka, T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization. Electrochim. Acta 2008, 53, 4679–4686.

    Article  Google Scholar 

  33. Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Zhao, C. C. Ultrafine nanoporous Cu-Pd alloys with superior catalytic activities towards electro-oxidation of methanol and ethanol in alkaline media. RSC Adv. 2012, 2, 11820–11828.

    Article  Google Scholar 

  34. Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540–2546.

    Article  Google Scholar 

  35. Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747–4754.

    Article  Google Scholar 

  36. Cui, Z. M.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. High-performance Pd3Pb intermetallic catalyst for electrochemical oxygen reduction. Nano Lett. 2016, 16, 2560–2566.

    Article  Google Scholar 

  37. Shi, Q. R.; Zhu, C. Z.; Bi, C. X.; Xia, H. B.; Engelhard, M. H.; Du, D.; Lin, Y. H. Intermetallic Pd3Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. J. Mater. Chem. A 2017, 5, 23952–23959.

    Article  Google Scholar 

  38. Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.

    Article  Google Scholar 

  39. Gunji, T.; Noh, S. H.; Tanabe, T.; Han, B.; Nien, C. Y.; Ohsaka, T.; Matsumoto, F. Enhanced electrocatalytic activity of carbon-supported ordered intermetallic palladium-lead (Pd3Pb) nanoparticles toward electrooxidation of formic acid. Chem. Mater. 2017, 29, 2906–2913.

    Article  Google Scholar 

  40. Li, X.; An, L.; Wang, X. Y.; Li, F.; Zou, R. Q.; Xia, D. G. Supported sub-5nm Pt-Fe intermetallic compounds for electrocatalytic application. J. Mater. Chem. 2012, 22, 6047–6052.

    Article  Google Scholar 

  41. Cui, Z. M.; Li, L. J.; Manthiram, A.; Goodenough, J. B. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7278–7281.

    Article  Google Scholar 

  42. Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L. J.; Zhu, Y. M.; Adzic, R. R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185.

    Article  Google Scholar 

  43. Zhang, G. J.; Zhang, L.; Shen, L. P.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic properties of palladium network nanostructures. ChemPlusChem 2012, 77, 936–940.

    Article  Google Scholar 

  44. Liu, H. M.; Li, J. H.; Wang, L. J.; Tang, Y. W.; Xia, B. Y.; Chen, Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res. 2017, 10, 3324–3332.

    Article  Google Scholar 

  45. Fu, G. T.; Liu, Z. Y.; Zhang, J. F.; Wu, J. Y.; Xu, L.; Sun, D. M.; Zhang, J. B.; Tang, Y. W.; Chen, P. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016, 9, 2110–2122.

    Article  Google Scholar 

  46. Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine- driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.

    Article  Google Scholar 

  47. Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

    Article  Google Scholar 

  48. Wang, Y. C.; Chen, J. W.; Zhou, F. L.; Zhang, J.; Wei, X. Y.; Luo, R.; Wang, G.; Wang, R. L. Dealloyed platinum-copper with isolated Pt atom surface: Facile synthesis and promoted dehydrogenation pathway of formic acid electro-oxidation. J. Electroanal. Chem. 2017, 799, 78–83.

    Article  Google Scholar 

  49. Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.

    Google Scholar 

  50. Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21503111, 21576139, and 21376122), Natural Science Foundation of Jiangsu Province (No. BK20171473), Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 16KJB150020) and Key Laboratory of Renewable Energy, Chinese Academy of Sciences (No. Y607k51001). The authors are also grateful for the supports from National and Local Joint Engineering Research Center of Biomedical Functional Materials and a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gengtao Fu or Yawen Tang.

Electronic supplementary material

12274_2018_2051_MOESM1_ESM.pdf

Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fu, G., Li, J. et al. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 11, 4686–4696 (2018). https://doi.org/10.1007/s12274-018-2051-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2051-7

Keywords

Navigation