Advertisement

Nano Research

, Volume 11, Issue 9, pp 4664–4672 | Cite as

Synthesis, characterization, theoretical investigation, and properties of monoclinic-phase InWO4 hollow nanospheres

  • Yuping Wang
  • Di Wang
  • Ying Xie
  • Guofeng Wang
Research Article
  • 109 Downloads

Abstract

As a newly discovered member of the tungstate family, InWO4 hollow nanospheres with a monoclinic wolframite structure were synthesized successfully. The crystal phase of InWO4 was investigated via a combination of CASTEP geometric optimization and experimental simulation. InWO4 has a space group of P2/c with two InWO4 formula units per unit cell. The optimized cell dimensions are a = 5.16 Å, b = 5.97 Å, and c = 5.23 Å, with α = 90°, β = 92.11°, γ = 90°, giving a unit cell volume of 161.10 Å3, which is consistent with the experimental measurements. More importantly, InWO4 was a promising host material for different Ln3+ (Ln = Eu and Yb/Er) ions. For InWO4:Yb3+/Er3+ excited at 980 nm, transitions from the 4G11/2 (384 nm), 2H9/2 (411 nm), and 4F7/2 (487 nm) levels to the ground state (4I15/2) of Er3+ were observed. In addition to the aforementioned properties, the InWO4 hollow nanospheres can be used to improve the performance of dye-sensitized solar cells, which is chiefly attributed to theirlight scattering.

Keywords

InWO4 rare earth hollow nanospheres luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21471050) and the Innovative Project of Postgraduate of Heilongjiang University (No. YJSCX2017-52HLJU).

Supplementary material

12274_2018_2048_MOESM1_ESM.cif (2 kb)
Supplementary material, approximately 1.62 KB.
12274_2018_2048_MOESM2_ESM.pdf (594 kb)
Synthesis, characterization, theoretical investigation, and properties of monoclinic-phase InWO4 hollow nanospheres

References

  1. [1]
    Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.CrossRefGoogle Scholar
  2. [2]
    Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.CrossRefGoogle Scholar
  3. [3]
    Liang, X.; Xu, B.; Kuang, S. M.; Wang, X. Multi-functionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater. 2008, 20, 3739–3744.CrossRefGoogle Scholar
  4. [4]
    Yu, M. Q.; Su, J. M.; Wang, G. F.; Li, Y. D. Pt/Y2O3: Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 2016, 9, 2338–2346.CrossRefGoogle Scholar
  5. [5]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  6. [6]
    Chen, X.; Xu, W.; Zhang, L. H.; Bai, X.; Cui, S. B.; Zhou, D. L.; Yin, Z.; Song, H. W.; Kim, D. H. Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ composite films, and fingerprint identification. Adv. Funct. Mater. 2015, 25, 5462–5471.CrossRefGoogle Scholar
  7. [7]
    Zhang, J.; Yuan, Y.; Wang, Y.; Sun, F. F.; Liang, G. L.; Jiang, Z.; Yu, S. H. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 2015, 8, 2329–2339.CrossRefGoogle Scholar
  8. [8]
    Wang, L. Y.; Bao, J.; Wang, L.; Zhang, F.; Li, Y. D. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem.—Eur. J. 2006, 12, 6341–6347.CrossRefGoogle Scholar
  9. [9]
    Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.CrossRefGoogle Scholar
  10. [10]
    Wang, G. F.; Peng, Q.; Li, Y. D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201.CrossRefGoogle Scholar
  11. [11]
    Xu, W.; Song, H. W.; Chen, X.; Wang, H. Y.; Cui, S. B.; Zhou, D. L.; Zhou, P. W.; Xu, S. Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core-shell nanocrystals on Ag grating films. Chem. Commun. 2015, 51, 1502–1505.CrossRefGoogle Scholar
  12. [12]
    Feng, W.; Han, C. M.; Li, F. Y. Upconversion-nanophosphor-based functional nanocomposites. Adv. Mater. 2013, 25, 5287–5303.CrossRefGoogle Scholar
  13. [13]
    Yang, Y. M.; Velmurugan, B.; Liu, B. G.; Xing, B. G. NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 2013, 9, 2937–2944.CrossRefGoogle Scholar
  14. [14]
    Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50–56.CrossRefGoogle Scholar
  15. [15]
    Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958.CrossRefGoogle Scholar
  16. [16]
    Yin, A. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2010, 2, 953–959.CrossRefGoogle Scholar
  17. [17]
    Li, F.; Wang, X. D.; Xia, Z. G.; Pan, C. F.; Liu, Q. L. Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting. Adv. Mater. 2017, 27, 1700051.Google Scholar
  18. [18]
    Wang, D.; Wang, R. H.; Liu, L. J.; Qu, Y.; Wang, G. F.; Li, Y. D. Down-shifting luminescence of water soluble NaYF4: Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci. China Mater. 2017, 60, 68–74.CrossRefGoogle Scholar
  19. [19]
    Zhai, H. J.; Kiran, B.; Cui, L. F.; Li, X.; Dixon, D. A.; Wang, L. S. Electronic structure and chemical bonding in MOn - and MOn clusters (M=Mo, W; n=3–5): A photoelectron spectroscopy and ab initio study. J. Am. Chem. Soc. 2004, 126, 16134–16141.CrossRefGoogle Scholar
  20. [20]
    Kaczmarek, A. M.; van Deun, R. Rare earth tungstate and molybdate compounds-from 0D to 3D architectures. Chem. Soc. Rev. 2013, 42, 8835–8848.CrossRefGoogle Scholar
  21. [21]
    Liao, H. W.; Wang, Y. F.; Liu, X. M.; Li, Y. D.; Qian, Y. T. Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chem. Mater. 2000, 12, 2819–2821.CrossRefGoogle Scholar
  22. [22]
    Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4: Eu3+ nanowires. Chem. Commun. 2016, 52, 11124–11126.CrossRefGoogle Scholar
  23. [23]
    Zhang, Y.; Zhang, B.; Peng, X.; Liu, L.; Dong, S.; Lin, L. P.; Chen, S.; Meng, S. X.; Feng, Y. Q. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Res. 2015, 8, 3830–3841.CrossRefGoogle Scholar
  24. [24]
    Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.CrossRefGoogle Scholar
  25. [25]
    Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847.CrossRefGoogle Scholar
  26. [26]
    Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat. Commun. 2013, 4, 1583.CrossRefGoogle Scholar
  27. [27]
    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 2015, 23, 1–9.CrossRefGoogle Scholar
  28. [28]
    Thapa, A.; Zai, J. T.; Elbonhy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.CrossRefGoogle Scholar
  29. [29]
    Costa, R. D.; Lodermeyer, F.; Casillas, R.; Guldi, D. M. Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 1281–1296.CrossRefGoogle Scholar
  30. [30]
    Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N.; Kim, K.; Lee, W. I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668–3673.CrossRefGoogle Scholar
  31. [31]
    Liao, J. Y.; Lei, B. X.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 5750–5757.CrossRefGoogle Scholar
  32. [32]
    Yu, M. Q.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4: Er3+/Yb3+ and g-C3N4. Sci. China Mater. 2017, 60, 228–238.CrossRefGoogle Scholar
  33. [33]
    Wu, Y. Z.; Zhang, X.; Li, W. Q.; Wang, Z. S.; Tian, H.; Zhu, W. H. Hexylthiophene-featured D-A-π-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells. Adv. Energy. Mater. 2012, 2, 149–156.CrossRefGoogle Scholar
  34. [34]
    Fan, K.; Yu, G. J.; Ho, W. K. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: A brief review. Mater. Horiz. 2017, 4, 319–344.CrossRefGoogle Scholar
  35. [35]
    Sun, Q. Q.; Li, Y. F.; Dou, J.; Wei M. D. Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications. Sci. China Mater. 2016, 59, 867–883.CrossRefGoogle Scholar
  36. [36]
    Li, L. B.; Wu, W. Q.; Rao, H. S.; Chen, H. Y.; Feng, H. L.; Kuang, D. B.; Su, C. Y. Hierarchical ZnO nanorod-on-nanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Sci. China Mater. 2016, 59, 807–816.CrossRefGoogle Scholar
  37. [37]
    Wang, H.; Hu, Y. H. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 8182–8188.CrossRefGoogle Scholar
  38. [38]
    Wu, M. X.; Lin, X.; Hagfeldt, A.; Ma, T. L. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2011, 50, 3520–3524.CrossRefGoogle Scholar
  39. [39]
    Peter, L. M. The Grätzel cell: Where next. J. Phys. Chem. Lett. 2011, 2, 1861–1867.CrossRefGoogle Scholar
  40. [40]
    Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.CrossRefGoogle Scholar
  41. [41]
    Zhang, J.; Li, S. J.; Yang, P. F.; Que, W. X.; Liu, W. G. Deposition of transparent TiO2 nanotubes-films via electrophoretic technique for photovoltaic applications. Sci. China Mater. 2015, 58, 785–790.CrossRefGoogle Scholar
  42. [42]
    Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.CrossRefGoogle Scholar
  43. [43]
    Wu, W. Q.; Liao, J. Y.; Chen, H. Y.; Su, C. Y.; Kuang, D. B. Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J. Mater. Chem. 2012, 22, 18057–18062.CrossRefGoogle Scholar
  44. [44]
    Liu, Y. M.; Zhai, H. W.; Guo, F.; Huang, N.; Sun, W. W.; Bu, C. H.; Peng, T.; Yuan, J. K.; Zhao, X. Z. Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells. Nanoscale 2012, 4, 6863–6869.CrossRefGoogle Scholar
  45. [45]
    Ferber, J.; Luther, J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 1998, 54, 265–275.CrossRefGoogle Scholar
  46. [46]
    Rothenberger, G.; Comte, P.; Grätzel, M. A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 1999, 58, 321–336.CrossRefGoogle Scholar
  47. [47]
    Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1176–1188.CrossRefGoogle Scholar
  48. [48]
    Pan, J. H.; Zhang, X. W.; Du, A. J.; Sun, D. D.; Leckie, J. O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J. Am. Chem. Soc. 2008, 130, 11256–11257.CrossRefGoogle Scholar
  49. [49]
    Wang, P.; Dai, Q.; Zakeeruddin, S. M.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.CrossRefGoogle Scholar
  50. [50]
    Nazeerudin, M. K.; Kay, A.; Rodicioet, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X 2bis(2, 2′-bipyridyl-4, 4′-dicarboxylate)ruthenium (II) charge-transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390.CrossRefGoogle Scholar
  51. [51]
    Hwang, D.; Lee, H.; Jang, S. Y.; Jo, S.; Kim, D.; Seo, Y.; Kim, D. Y. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2719–2725.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina

Personalised recommendations