Plasmon-enhanced ZnO whispering-gallery mode lasing

  • Chunxiang Xu
  • Feifei Qin
  • Qiuxiang Zhu
  • Junfeng Lu
  • Yueyue Wang
  • Jitao Li
  • Yi Lin
  • Qiannan Cui
  • Zengliang Shi
  • Arumugam Gowri Manohari
Research Article
  • 10 Downloads

Abstract

Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.

Keywords

ZnO microcavity surface plasmon whispering-gallery mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61275054, 11604114 and 11734005) and Science and Technology Support Program of Jiangsu Province (No. BE2016177).

References

  1. [1]
    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.Google Scholar
  2. [2]
    Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.Google Scholar
  3. [3]
    Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735.Google Scholar
  4. [4]
    Zhu, Q. X.; Hu, C. D.; Wang, W. J.; He, M. A.; Zhou, J.; Zhao, L. Z.; Peng, Z. X.; Li, S. T.; Zhu, N.; Zhang, Y. Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Sci. China-Phys. Mech. Astron. 2011, 54, 240–244.Google Scholar
  5. [5]
    Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J. Y.; Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511.Google Scholar
  6. [6]
    Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nanooptics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.Google Scholar
  7. [7]
    Liu, L.; Han, Z. H.; He, S. L. Novel surface plasmon waveguide for high integration. Opt. Express 2005, 13, 6645–6650.Google Scholar
  8. [8]
    Li, Y. J.; Hong, Y.; Peng, Q.; Yao, J. N.; Zhao, Y. S. Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures. ACS Nano 2017, 11, 10106–10112.Google Scholar
  9. [9]
    Li, Y. J.; Yan, Y. L.; Zhang, C.; Zhao, Y. S.; Yao, J. N. Embedded branch-like organic/metal nanowire heterostructures: Liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation. Adv. Mater. 2013, 25, 2784–2788.Google Scholar
  10. [10]
    Liedberg, B.; Nylander, C.; Lundström, I. Biosensing with surface plasmon resonance—How it all started. Biosens. Bioelectron. 1995, 10, i–ix.Google Scholar
  11. [11]
    Feng, J.; Siu, V. S.; Roelke, A.; Mehta, V.; Rhieu, S. Y.; Palmore, G. T. R.; Pacifici, D. Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano. Lett. 2012, 12, 602–609.Google Scholar
  12. [12]
    Shahzad, M.; Medhi, G.; Peale, R. E.; Buchwald, W. R.; Cleary, J. W.; Soref, R.; Boreman, G. D.; Edwards, O. Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 2011, 110, 123105.Google Scholar
  13. [13]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.Google Scholar
  14. [14]
    Panoiu, N. C.; Osgood, R. M. Subwavelength nonlinear plasmonic nanowire. Nano Lett. 2004, 4, 2427–2430.Google Scholar
  15. [15]
    Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Photosensitive goldnanoparticle- embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.Google Scholar
  16. [16]
    Zhou, F.; Liu, Y.; Li, Z. Y.; Xia, Y. N. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt. Express 2010, 18, 13337–13344.Google Scholar
  17. [17]
    Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159.Google Scholar
  18. [18]
    Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on ingan quantum wells. Nat. Mater. 2004, 3, 601–605.Google Scholar
  19. [19]
    Kwon, M. K.; Kim, J. Y.; Kim, B. H.; Park, I. K.; Cho, C. Y.; Byeon, C. C.; Park, S. J. Surface-plasmon-enhanced lightemitting diodes. Adv. Mater. 2008, 20, 1253–1257.Google Scholar
  20. [20]
    Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.Google Scholar
  21. [21]
    Qiu, Z. R.; Wong, K. S.; Wu, M. M.; Lin, W. J.; Xu, H. F. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Appl. Phy. Lett. 2004, 84, 2739–2741.Google Scholar
  22. [22]
    Zhu, H.; Shan, C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhang, Z. Z.; Zhao, D. X.; Shen, D. Z.; Fan, X. W.; Lu, Y. M. et al. Ultralow-threshold laser realized in zinc oxide. Adv. Mater. 2009, 21, 1613–1617.Google Scholar
  23. [23]
    Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.Google Scholar
  24. [24]
    Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.Google Scholar
  25. [25]
    Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.Google Scholar
  26. [26]
    Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 2003, 67, 23807–23823.Google Scholar
  27. [27]
    Zhu, G. Y.; Li, J. T.; Tian, Z. S.; Dai, J.; Wang, Y. Y.; Li, P. L.; Xu, C. X. Electro-pumped whispering gallery mode ZnO microlaser array. Appl. Phys. Lett. 2015, 106, 21111–21115.Google Scholar
  28. [28]
    Bashar, S. B.; Wu, C. X.; Suja, M.; Tian, H.; Shi, W. H.; Liu, J. L. Electrically pumped whispering gallery mode lasing from Au/ZnO microwire schottky junction. Adv. Opt. Mater. 2016, 4, 2063–2067.Google Scholar
  29. [29]
    Chu, S.; Olmedo, M.; Yang, Z.; Kong, J. Y.; Liu, J. L. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 2008, 93, 181106.Google Scholar
  30. [30]
    Dai, J.; Xu, C. X.; Sun, X. W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater. 2011, 23, 4115–4120.Google Scholar
  31. [31]
    Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391–4394.Google Scholar
  32. [32]
    Lin, Y.; Liu, X. Q.; Wang, T.; Chen, C.; Wu, H.; Liao, L.; Liu, C. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition. Nanotechnology 2013, 24, 125705.Google Scholar
  33. [33]
    Sidiropoulos, T. P. H.; Röder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 2014, 10, 870–876.Google Scholar
  34. [34]
    Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D. et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 2016, 16, 3179–3186.Google Scholar
  35. [35]
    Ren, M. L.; Liu, W. J.; Aspetti, C. O.; Sun, L. X.; Agarwal, R. Enhanced second-harmonic generation from metalintegrated semiconductor nanowires via highly confined whispering gallery modes. Nat. Commun. 2014, 5, 5432.Google Scholar
  36. [36]
    Lin, H. Y.; Cheng, C. L.; Chou, Y. Y.; Huang, L. L.; Chen, Y. F.; Tsen, K. T. Enhancement of band gap emission stimulated by defect loss. Opt. Express 2006, 14, 2372–2379.Google Scholar
  37. [37]
    Abiyasa, A. P.; Yu, S. F.; Lau, S. P.; Leong, E. S. P.; Yang, H. Y. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 2007, 90, 231106.Google Scholar
  38. [38]
    Zhang, S. G.; Wen, L.; Li, J. L.; Gao, F. L.; Zhang, X. W.; Li, L. H.; Li, G. Q. Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. J. Phy. D: Appl. Phys 2014, 47, 495103–495109.Google Scholar
  39. [39]
    Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.Google Scholar
  40. [40]
    Liu, Y.; Willis, R. F.; Emtsev, K.; Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 2008, 78, 201403–201407.Google Scholar
  41. [41]
    Liu, R.; Fu, X. W.; Meng, J.; Bie, Y. Q.; Yu, D. P.; Liao, Z. M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.Google Scholar
  42. [42]
    Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.Google Scholar
  43. [43]
    Tai, Y.; Guo, Z. C.; Sharma, J. Improved charge separation properties of organic hetero-junction solar cells by selfassembled monolayers anchored Ag nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 10813–10816.Google Scholar
  44. [44]
    Theiss, J. R. Design and characterization of metal and semiconducting nanostructures and nanodevices. Ph.D. Dissertation, University of Southern California, CA, 2013.Google Scholar
  45. [45]
    Ujihara, M.; Dang, N. M.; Imae, T. Surface-enhanced resonance Raman scattering of rhodamine 6G in dispersions and on films of confeito-like Au nanoparticles. Sensors 2017, 17, 2563–2580.Google Scholar
  46. [46]
    Jia, Y. R.; Zhang, L.; Song, L. P.; Dai, L. W.; Lu, X. F.; Huang, Y. J.; Zhang, J. W.; Guo, Z. Y.; Chen, T. Giant vesicles with anchored tiny gold nanowires: Fabrication and surface-enhanced Raman scattering. Langmuir 2017, 33, 13376–13383.Google Scholar
  47. [47]
    Kochuveedu, S. T.; Kim, D. P.; Kim, D. H. Surfaceplasmon- induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506.Google Scholar
  48. [48]
    Jiang, J.; Zhang, L. Z.; Li, H.; He, W. W.; Yin, J. J. Selfdoping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 2013, 5, 10573–10581.Google Scholar
  49. [49]
    Gao, H. W.; Liu, C.; Jeong, H. E.; Yang, P. D. Plasmonenhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234–240.Google Scholar
  50. [50]
    Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504–1512.Google Scholar
  51. [51]
    Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.Google Scholar
  52. [52]
    Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sensor. Actuat. B: Chem. 1999, 54, 3–15.Google Scholar
  53. [53]
    Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS nano 2013, 8, 834–840.Google Scholar
  54. [54]
    Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.Google Scholar
  55. [55]
    Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.Google Scholar
  56. [56]
    West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.Google Scholar
  57. [57]
    Ekinci, Y.; Solak, H. H.; Löffler, J. F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107.Google Scholar
  58. [58]
    McMahon, J. M.; Schatz, G. C.; Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423.Google Scholar
  59. [59]
    Despoja, V.; Novko, D.; Dekanić, K.; Šunjić, M.; Marušić, L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.Google Scholar
  60. [60]
    Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.Google Scholar
  61. [61]
    Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.Google Scholar
  62. [62]
    Zhu, J.; Ren, Y. J. Tuning the plasmon shift and local electric field distribution of gold nanodumbbell: The effect of surface curvature transition from positive to negative. Appl. Surf. Sci. 2013, 285, 649–656.Google Scholar
  63. [63]
    Yang, Z. L.; Aizpurua, J.; Xu, H. X. Electromagnetic field enhancement in ters configurations. J. Raman Spectrosc. 2009, 40, 1343–1348.Google Scholar
  64. [64]
    Knight, M. W.; Wang, Y. M.; Urban, A. S.; Sobhani, A.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.Google Scholar
  65. [65]
    Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmoninduced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.Google Scholar
  66. [66]
    White, T. P.; Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 2012, 101, 073905.Google Scholar
  67. [67]
    Moskovits, M. Hot electrons cross boundaries. Science 2011, 332, 676–677.Google Scholar
  68. [68]
    Chen, R.; Ling, B.; Sun, X. W.; Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199–2204.Google Scholar
  69. [69]
    Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.Google Scholar
  70. [70]
    Kim, C.; Kim, Y. J.; Jang, E. S.; Yi, G. C.; Kim, H. H. Whispering-gallery-modelike-enhanced emission from ZnO nanodisk. Appl. Phys. Lett. 2006, 88, 093104.Google Scholar
  71. [71]
    Ngo, T. H. B.; Chien, C. H.; Wu, S. H.; Chang, Y. C. Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis. Optics express 2016, 24, 16010–16015.Google Scholar
  72. [72]
    Yu, D. S.; Chen, Y. J.; Li, B. J.; Chen, X. D.; Zhang, M. Q.; Zhao, F. L.; Ren, S. Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Appl. Phys. Lett. 2007, 91, 091116.Google Scholar
  73. [73]
    Liu, J. Z.; Lee, S.; Ahn, Y. H.; Park, J. Y.; Koh, K. H.; Park, K. H. Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail. Appl. Phys. Lett. 2008, 92, 263102.Google Scholar
  74. [74]
    Wang, D.; Seo, H. W.; Tin, C. C.; Bozack, M. J.; Williams, J. R.; Park, M.; Tzeng, Y. Lasing in whispering gallery mode in ZnO nanonails. J. Appl. Phys. 2006, 99, 093112.Google Scholar
  75. [75]
    Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Twophoton excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.Google Scholar
  76. [76]
    Xing, G. Z.; Wang, D. D.; Yao, B.; Nien, A. Q. L. F.; Yan, Y. S. Structural characteristics, low threshold ultraviolet lasing and ultrafast carrier dynamics in high crystalline ZnO nanowire arrays. Chem. Phys. Lett. 2011, 515, 132–136.Google Scholar
  77. [77]
    Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.Google Scholar
  78. [78]
    Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983.Google Scholar
  79. [79]
    Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W. Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing. Chem. Phys. Lett. 2005, 413, 450–453.Google Scholar
  80. [80]
    Som, T.; Karmakar, B. Surface plasmon resonance in nanogold antimony glass-ceramic dichroic nanocomposites: One-step synthesis and enhanced fluorescence application. Appl. Surf. Sci. 2009, 255, 9447–9452.Google Scholar
  81. [81]
    Pachoumi, O.; Bakulin, A. A.; Sadhanala, A.; Sirringhaus, H.; Friend, R. H.; Vaynzof, Y. Improved performance of ZnO/polymer hybrid photovoltaic devices by combining metal oxide doping and interfacial modification. J. Phys. Chem. C 2014, 118, 18945–18950.Google Scholar
  82. [82]
    Qiao, Q.; Shan, C. X.; Zheng, J.; Zhu, H.; Yu, S. F.; Li, B. H.; Jia, Y.; Shen, D. Z. Surface plasmon enhanced electrically pumped random lasers. Nanoscale 2013, 5, 513–517.Google Scholar
  83. [83]
    Brewster, M. M.; Zhou, X.; Lim, S. K.; Gradecak, S. Role of Au in the growth and nanoscale optical properties of ZnO nanowires. J. Phys. Chem. Lett. 2011, 2, 586–591.Google Scholar
  84. [84]
    You, J. B.; Zhang, X. W.; Fan, Y. M.; Qu, S.; Chen, N. F. Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering. Appl. Phys. Lett. 2007, 91, 231907.Google Scholar
  85. [85]
    Lee, M. K.; Kim, T. G.; Kim, W.; Sung, Y. M. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. C 2008, 112, 10079–10082.Google Scholar
  86. [86]
    Im, J.; Singh, J.; Soares, J. W.; Steeves, D. M.; Whitten, J. E. Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites. J. Phys. Chem. C 2011, 115, 10518–10523.Google Scholar
  87. [87]
    Li, J.; Ong, H. C. Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films. Appl. Phys. Lett. 2008, 92, 121107–121111.Google Scholar
  88. [88]
    Dixit, T.; Palani, I.; Singh, V. Role of surface plasmon decay mediated hot carriers toward the photoluminescence tuning of metal-coated ZnO nanorods. J. Phys. Chem. C 2017, 121, 3540–3548.Google Scholar
  89. [89]
    Ji, X. H.; Zhang, Q. Y.; Lau, S. P.; Jiang, H. X.; Lin, J. Y. Temperature-dependent photoluminescence and electron field emission properties of AlN nanotip arrays. Appl. Phys. Lett. 2009, 94, 173106.Google Scholar
  90. [90]
    Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.Google Scholar
  91. [91]
    Wang, Y. Y.; Qin, F. F.; Lu, J. F.; Li, J. T.; Zhu, Z.; Zhu, Q. X.; Zhu, Y.; Shi, Z. L.; Xu, C. X. Plasmon enhancement for vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities. Nano Res. 2017, 10, 3447–3456.Google Scholar
  92. [92]
    Wang, C. S.; Lin, H. Y.; Lin, J. M.; Chen, Y. F. Surfaceplasmon- enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Appl. Phys. Express 2012, 5, 062003.Google Scholar
  93. [93]
    Pei, J.; Jiang, D.; Zhao, M.; Duan, Q.; Liu, R.; Sun, L.; Guo, Z.; Hou, J.; Qin, J.; Li, B. Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles. Appl. Surf. Sci. 2016, 389, 1056–1061.Google Scholar
  94. [94]
    Lawrie, B. J.; Haglund, R. F.; Mu, R. Enhancement of ZnO photoluminescence by localized and propagating surface plasmons. Opt. Express 2009, 17, 2565–2572.Google Scholar
  95. [95]
    Lin, Y.; Li, J.; Xu, C.; Fan, X.; Wang, B. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107–142111.Google Scholar
  96. [96]
    Cheng, C. W.; Sie, E. J.; Liu, B.; Huan, C. H. A.; Sum, T. C.; Sun, H. D.; Fan, H. J. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl. Phys. Lett. 2010, 96, 071107.Google Scholar
  97. [97]
    Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.Google Scholar
  98. [98]
    Qin, F. F.; Xu, C. X.; Zhu, Q. X.; Lu, J. F.; You, D. T.; Xu, W.; Zhu, Z.; Manohari, A. G.; Chen, F. Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons. Nanoscale 2018, 10, 623–627.Google Scholar
  99. [99]
    Qin, F. F.; Chang, N.; Xu, C. X.; Zhu, Q. X.; Wei, M.; Zhu, Z.; Chen, F.; Lu, J. F. Underlying mechanism of blue emission enhancement in Au decorated p-GaN film. RSC Adv. 2017, 7, 15071–15076.Google Scholar
  100. [100]
    Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.Google Scholar
  101. [101]
    Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.Google Scholar
  102. [102]
    Zhu, Q. X.; Qin, F. F.; Lu, J. F.; Zhu, Z.; Nan, H. Y.; Shi, Z. L.; Ni, Z. H.; Xu, C. X. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 2017, 10, 1996–2004.Google Scholar
  103. [103]
    Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.Google Scholar
  104. [104]
    Chen, J. S.; Žídek, K.; Abdellah, M.; Al-Marri, M. J.; Zheng, K. B.; Pullerits, T. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core shell quantum dots. J. Phys.: Condens. Matter 2016, 28, 254001.Google Scholar
  105. [105]
    Chen, T.; Xing, G. Z.; Zhang, Z.; Chen, H. Y.; Wu, T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology 2008, 19, 435711.Google Scholar
  106. [106]
    Mishra, Y. K.; Mohapatra, S.; Singhal, R.; Avasthi, D. K.; Agarwal, D. C.; Ogale, S. B. Au–ZnO: A tunable localized surface plasmonic nanocomposite. Appl. Phys. Lett. 2008, 92, 043107.Google Scholar
  107. [107]
    Cheng, P. H.; Li, D. S.; Yuan, Z. Z.; Chen, P. L.; Yang, D. R. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl. Phys. Lett. 2008, 92, 041119.Google Scholar
  108. [108]
    Zhang, C.; Xu, H. Y.; Liu, W. Z.; Yang, L.; Zhang, J.; Zhang, L. X.; Wang, J. N.; Ma, J. G.; Liu, Y. C. Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon-localized surface plasmon couplings. Opt. Express 2015, 23, 15565–15574.Google Scholar
  109. [109]
    Mahanti, M.; Basak, D. Enhanced photoluminescence in Ag@SiO2 core shell nanoparticles coated ZnO nanorods. J. Lumin. 2014, 154, 535–540.Google Scholar
  110. [110]
    Liu, B. B.; Zhu, W. R.; Gunapala, S. D.; Stockman, M. I.; Premaratne, M. Open resonator electric spaser. ACS Nano 2017, 11, 12573–12582.Google Scholar
  111. [111]
    Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaserbased nanolaser. Nature 2009, 460, 1110–1112.Google Scholar
  112. [112]
    Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632.Google Scholar
  113. [113]
    Lu, J. F.; Jiang, M. M.; Wei, M.; Xu, C. X.; Wang, S. F.; Zhu, Z.; Qin, F. F.; Shi, Z. L.; Pan, C. F. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 2017, 4, 2419–2424.Google Scholar
  114. [114]
    Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.; Chen, L.-J.; Stockman, M. I.; Shih, C.-K. et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14, 4381–4388.Google Scholar
  115. [115]
    Chou, Y.-H.; Chou, B.-T.; Chiang, C.-K.; Lai, Y.-Y.; Yang, C.-T.; Li, H.; Lin, T.-R.; Lin, C.-C.; Kuo, H.-C.; Wang, S.-C. et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 2015, 9, 3978–3983.Google Scholar
  116. [116]
    Humar, M.; Yun, S. H. Intracellular microlasers. Nat. Photonics 2015, 9, 572–578.Google Scholar
  117. [117]
    Li, Z.-Y.; Xia, Y. N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett. 2010, 10, 243–249.Google Scholar
  118. [118]
    Lu, J. F.; Xu, C. X.; Nan, H. Y.; Zhu, Q. X.; Qin, F. F.; Manohari, A. G.; Wei, M.; Zhu, Z.; Shi, Z. L.; Ni, Z. H. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection. Appl. Phys. Lett. 2016, 109, 073701.Google Scholar
  119. [119]
    Liu, Y. J.; Xu, C. X.; Lu, J. F.; Zhu, Z.; Zhu, Q. X.; Manohari, A. G.; Shi, Z. L. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Appl. Surf. Sci. 2018, 427, 830–836.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunxiang Xu
    • 1
  • Feifei Qin
    • 1
  • Qiuxiang Zhu
    • 1
    • 2
  • Junfeng Lu
    • 1
    • 3
  • Yueyue Wang
    • 4
  • Jitao Li
    • 5
  • Yi Lin
    • 6
  • Qiannan Cui
    • 1
  • Zengliang Shi
    • 1
  • Arumugam Gowri Manohari
    • 1
  1. 1.State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
  2. 2.College of Information and Electronic EngineeringHunan City UniversityYiyangChina
  3. 3.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  4. 4.School of SciencesZhejiang A&F UniversityHangzhouChina
  5. 5.School of Physics and Telecommunications EngineeringZhoukou Normal UniversityZhoukouChina
  6. 6.Department of Mathematics and PhysicsHuaiyin Institute of TechnologyHuaiyinChina

Personalised recommendations