Advertisement

Nano Research

, Volume 11, Issue 9, pp 4627–4642 | Cite as

A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy

  • Huipeng Li
  • Zhanwei Zhou
  • Feiran Zhang
  • Yuxin Guo
  • Xue Yang
  • Hulin Jiang
  • Fei Tan
  • David Oupicky
  • Minjie Sun
Research Article
  • 81 Downloads

Abstract

In this study, a networked swellable dextrin nanogel (DNG) was developed to achieve stimulated responsive small interfering RNA (siRNA) release for melanoma tumor therapy. siRNA was loaded into multidimensional dextrin nanogels by charge condensation with positive arginine residues modified in the dextrin backbone. Moreover, the networked nanogel was destroyed and loosened based on its bioreducible responsive property to control accelerated siRNA release in a bioreducible intracellular environment, while it remained stable under normal physiological conditions. We demonstrated that DNGs had swellable and disassembly properties under reduced buffer condition by transmission electron microscopy evaluation. The DNGs achieved an endosomal escape followed by selective release of the cargo into the cytosol by glutathione-triggered disassembly according to confocal microscopy observation. Thus, this smart nanogel achieved outstanding luciferase gene silencing efficiency and decreased Bcl2 protein expression in vitro and in vivo based on western blot analysis. Moreover, this nanogel exhibited superior anti-tumor activity for B16F10 xenograft tumors in C57BL/6 mice. These results demonstrate that the networked DNGs are effective for gene condensation and controlled intracellular release for tumor therapy. Overall, these findings suggest that this multidimensional swellable stimuli-responsive dextrin nanogel is an innovative strategy with great promise for gene and drug delivery.

Keywords

dextrin nanogels local enrichment reduction-responsive lysosomal escape disulfide cross-linked small interfering RNA (siRNA) delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Science and Technology Major Project (No. 2017YFA0205400), the National Natural Science Foundation of China (Nos. 81373983 and 81573377), the Jiangsu Fund for Distinguished Youth (No. BK20170028) and the Natural Science Foundation of Jiangsu Province (No. BK20141352). The authors also acknowledged Dr. Maoshen Jie (Roquette Ltd., Shanghai, China) for his kind help in providing dextrin.

Supplementary material

12274_2018_2044_MOESM1_ESM.pdf (2.4 mb)
A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy

References

  1. [1]
    Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.CrossRefGoogle Scholar
  2. [2]
    Oh, Y. K.; Park, T. G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 2009, 61, 850–862.CrossRefGoogle Scholar
  3. [3]
    Dominska, M.; Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 2010, 123, 1183–1189.CrossRefGoogle Scholar
  4. [4]
    Wang, J.; Lu, Z.; Wientjes, M. G.; Au, J. L. S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J. 2010, 12, 492–503.CrossRefGoogle Scholar
  5. [5]
    Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659.CrossRefGoogle Scholar
  6. [6]
    Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.CrossRefGoogle Scholar
  7. [7]
    Li, H. P.; Yuan, D. F.; Sun, M. J.; Ping, Q. N. Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor in vitro and in vivo. Drug Deliv. 2016, 23, 3562–3572.CrossRefGoogle Scholar
  8. [8]
    Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.CrossRefGoogle Scholar
  9. [9]
    Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011, 151, 220–228.CrossRefGoogle Scholar
  10. [10]
    Zhang, X. J.; Achazi, K.; Haag, R. Boronate cross-linked ATP- and pH-responsive nanogels for intracellular delivery of anticancer drugs. Adv. Healthc. Mater. 2015, 4, 585–592.CrossRefGoogle Scholar
  11. [11]
    Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.CrossRefGoogle Scholar
  12. [12]
    Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.CrossRefGoogle Scholar
  13. [13]
    Wu, J.; Zhao, L. L.; Xu, X. D.; Bertrand, N.; Choi, W. I.; Yameen, B.; Shi, J. J.; Shah, V.; Mulvale, M.; MacLean, J. L. et al. Hydrophobic cysteine poly(disulfide)-based redoxhypersensitive nanoparticle platform for cancer theranostics. Angew. Chem., Int. Ed. 2015, 54, 9218–9223.CrossRefGoogle Scholar
  14. [14]
    Godbey, W. T.; Wu, K. K.; Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 1999, 60, 149–160.CrossRefGoogle Scholar
  15. [15]
    Cheng, R.; Feng, F.; Meng, F. H.; Deng, C.; Feijen, J.; Zhong, Z. Y. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011, 152, 2–12.CrossRefGoogle Scholar
  16. [16]
    Franco, R.; Cidlowski, J. A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ. 2009, 16, 1303–1314.CrossRefGoogle Scholar
  17. [17]
    Mitchell, J. B.; Russo, A. The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 1987, 8, 96–104.Google Scholar
  18. [18]
    Russo, A.; De Graff, W.; Friedman, N.; Mitchell, J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986, 46, 2845–2848.Google Scholar
  19. [19]
    Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem. Rec. 2010, 10, 366–376.Google Scholar
  20. [20]
    Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.CrossRefGoogle Scholar
  21. [21]
    Sisson, A. L.; Steinhilber, D.; Rossow, T.; Welker, P.; Licha, K.; Haag, R. Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem., Int. Ed. 2009, 48, 7540–7545.CrossRefGoogle Scholar
  22. [22]
    Seiffert, S. Small but smart: Sensitive microgel capsules. Angew. Chem., Int. Ed. 2013, 52, 11462–11468.CrossRefGoogle Scholar
  23. [23]
    Oh, J. K.; Lee, D. I.; Park, J. M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282.CrossRefGoogle Scholar
  24. [24]
    Sahiner, N.; Godbey, W. T.; Mcpherson, G. L.; John, V. T. Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: Synthesis and characterization. Colloid Polym. Sci. 2006, 284, 1121–1129.CrossRefGoogle Scholar
  25. [25]
    Kabanov, A. V.; Vinogradov, S. V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem., Int. Ed. 2009, 48, 5418–5429.CrossRefGoogle Scholar
  26. [26]
    Raemdonck, K.; Demeester, J.; De Smedt, S. Advanced nanogel engineering for drug delivery. Soft Matter 2009, 5, 707–715.CrossRefGoogle Scholar
  27. [27]
    He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Both core- and shell-cross-linked nanogels: Photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 2011, 27, 436–444.CrossRefGoogle Scholar
  28. [28]
    Klinger, D.; Landfester, K. Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: pH-dependent swelling and light-induced degradation. Macromolecules 2011, 44, 9758–9772.CrossRefGoogle Scholar
  29. [29]
    Wang, Y. C.; Wu, J.; Li, Y.; Du, J. Z.; Yuan, Y. Y.; Wang, J. Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chem. Commun. 2010, 46, 3520–3522.CrossRefGoogle Scholar
  30. [30]
    Zhuang, J. M.; Jiwpanich, S.; Deepak, V. D.; Thayumanavan, S. Facile preparation of nanogels using activated ester containing polymers. ACS Macro Lett. 2012, 1, 175–179.CrossRefGoogle Scholar
  31. [31]
    Li, Y. L.; Zhu, L.; Liu, Z. Z.; Cheng, R.; Meng, F. H.; Cui, J. H.; Ji, S. J.; Zhong, Z. Y. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew. Chem., Int. Ed. 2009, 48, 9914–9918.CrossRefGoogle Scholar
  32. [32]
    Zhang, X. J.; Achazi, K.; Steinhilber, D.; Kratz, F.; Dernedde, J.; Haag, R. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. J. Control. Release 2014, 174, 209–216.CrossRefGoogle Scholar
  33. [33]
    Gonçalves, C.; Torrado, E.; Martins, T.; Pereira, P.; Pedrosa, J.; Gama, M. Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids Surf. B: Biointerfaces 2010, 75, 483–489.CrossRefGoogle Scholar
  34. [34]
    Carvalho, V.; Castanheira, P.; Faria, T. Q.; Gonçalves, C.; Madureira, P.; Faro, C.; Domingues, L.; Brito, R. M. M.; Vilanova, M.; Gama, M. Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system. Int. J. Pharm. 2010, 400, 234–242.CrossRefGoogle Scholar
  35. [35]
    Das, D.; Das, R.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin cross linked with poly(HEMA): A novel hydrogel for colon specific delivery of ornidazole. RSC Adv. 2013, 3, 25340–25350.CrossRefGoogle Scholar
  36. [36]
    Das, D.; Patra, P.; Ghosh, P.; Rameshbabu, A. P.; Dhara, S.; Pal, S. Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym. Chem. 2016, 7, 2965–2975.CrossRefGoogle Scholar
  37. [37]
    Molinos, M.; Carvalho, V.; Silva, D. M.; Gama, F. M. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules 2012, 13, 517–527.CrossRefGoogle Scholar
  38. [38]
    Manchun, S.; Cheewatanakornkool, K.; Dass, C. R.; Sriamornsak, P. Novel pH-responsive dextrin nanogels for doxorubicin delivery to cancer cells with reduced cytotoxicity to cardiomyocytes and stem cells. Carbohydr. Polym. 2014, 114, 78–86.CrossRefGoogle Scholar
  39. [39]
    Sedlak, J.; Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205.CrossRefGoogle Scholar
  40. [40]
    Gilboe, D. D.; Willams, J. N., Jr. Evaluation of the Sakaguchi reaction for quanitative determination of arginine. Exp. Biol. Med. 1956, 91, 535–536.CrossRefGoogle Scholar
  41. [41]
    Lee, S. J.; Huh, M. S.; Lee, S. Y.; Min, S.; Lee, S.; Koo, H.; Chu, J. U.; Lee, K. E.; Jeon, H.; Choi, Y. et al. Tumorhoming poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew. Chem., Int. Ed. 2012, 51, 7203–7207.CrossRefGoogle Scholar
  42. [42]
    Xie, Y.; Qiao, H. Z.; Su, Z. G.; Chen, M. L.; Ping, Q. N.; Sun, M. J. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014, 35, 7978–7991.CrossRefGoogle Scholar
  43. [43]
    Wong, C.; Stylianopoulos, T.; Cui, J. A.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.CrossRefGoogle Scholar
  44. [44]
    Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.CrossRefGoogle Scholar
  45. [45]
    Adams, J. M.; Cory, S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998, 281, 1322–1326.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huipeng Li
    • 1
  • Zhanwei Zhou
    • 1
  • Feiran Zhang
    • 1
  • Yuxin Guo
    • 1
  • Xue Yang
    • 1
  • Hulin Jiang
    • 1
  • Fei Tan
    • 3
  • David Oupicky
    • 1
    • 2
  • Minjie Sun
    • 1
  1. 1.State Key Laboratory of Natural Medicines and Department of PharmaceuticsChina Pharmaceutical UniversityNanjingChina
  2. 2.Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Shanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina

Personalised recommendations