Stimuli-responsive gel-micelles with flexible modulationof drug release for maximized antitumor efficacy

  • Djamila Aouameur
  • Hao Cheng
  • Yaw Opoku-Damoah
  • Bo Sun
  • Qiuling Dong
  • Yue Han
  • Jianping Zhou
  • Yang Ding
Research Article
  • 40 Downloads

Abstract

Engineered stimuli-responsive drug delivery devices hold vast promise inbiological applications for disease treatment due to their maximized therapeuticefficacy. In this study, a novel, stably cross-linked, and pH-sensitive biodegradablegel-micelle was constructed with amphiphilic conjugates of trimethylene dipiperidine-methacrylic anhydride-hyaluronic acid-stearylamine (TMDP-MA-HA-SA, TMHS) to improve tumor-targeting with flexible intracellular delivery of paclitaxel (PTX).The cross-linked methacrylate bonds significantly improved the biostability of TMHS gel-micelle (~ 200 nm) over the non-cross-linked under physiological conditions, while hyaluronic acid plays an important role in active tumortargetability. The gradual degradation of cross-linked hyaluronic acid shell was triggered by the concentrated hyaluronidase. Meanwhile, under acidic conditions(pH < 6.5), the tertiary amines of pH-sensitive TMDP moieties were protonated and thereby solubilized the gel-micellar core-portions. The resultant pH-triggered inner-core spaces rapidly prompted PTX release in the presence of multiplecytosolic enzymes that mainly degraded the remaining hydrophobic stearylaminecore. During the in vitro cytotoxicity assay, PTX-loaded TMHS gel-micelles (CLTMHSPTX) revealed anticancer efficacy against human hepatocellular carcinomaHepG2 cells with IC50 of 1.42 μg/mL(PTX concentration), significantly lower than other groups. In parallel, the in vivo anti-tumor efficacy of CLTMHSPTX gel-micelles against BALB/c xenograft tumor animal model demonstrated the greater tumor growth inhibition capacity of 72.06%, compared to other treatment groups at a safe concentration. Consequently, the cross-linked and stimuli-responsive CLTMHSPTX gel-micelles hold a great potential for flexible modulation of intracellular delivery of hydrophobic anticancer drugs withmaximized antitumor efficacy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2018_2012_MOESM1_ESM.pdf (425 kb)
Supplementary material, approximately 425 KB.

References

  1. [1]
    Kuang, H. H.; Ku, S. H.; Kokkoli, E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv. Drug Deliver. Rev. 2016, 110–111, 80–101.Google Scholar
  2. [2]
    Jian, C.; Xin, T.; Jie, Z.; Shi, T.; Peng, Z.; Chao, L. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta Biomater. 2016, 30, 155–167.CrossRefGoogle Scholar
  3. [3]
    Sahu, P.; Kashaw, S. K.; Jain, S.; Sau, S.; Iyer, A. K. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J. Control. Release 2017, 253, 122–136.CrossRefGoogle Scholar
  4. [4]
    Stocke, N. A.; Sethi, P.; Jyoti, A.; Chan, R.; Arnold, S. M.; Hilt, J. Z.; Upreti, M. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Biomaterials 2017, 120, 115–125.CrossRefGoogle Scholar
  5. [5]
    Liu, Y.; Wan, G. Y.; Guo, H.; Liu, Y. Y.; Zhou, P.; Wang, H. M.; Wang, D.; Zhang, S. P.; Wang, Y. S.; Zhang, N. A multifunctional nanoparticle system combines sonodynamic therapy and chemotherapy to treat hepatocellular carcinoma. Nano Res. 2017, 10, 834–855.CrossRefGoogle Scholar
  6. [6]
    Chen, Y.; Li, H. H.; Deng, Y. Y.; Sun, H. F.; Xue, K.; Ci, T. Y. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater. 2017, 51, 374–392.CrossRefGoogle Scholar
  7. [7]
    Cirillo, G.; Spizzirri, U. G.; Curcio, M.; Hampel, S.; Vittorio, O.; Restuccia, D.; Picci, N.; Iemma, F. Carbon nanohybrids as electro-responsive drug delivery systems. Mini Rev. Med. Chem. 2016, 16, 658–667.CrossRefGoogle Scholar
  8. [8]
    Li, T. S.; Amari, T.; Semba, K.; Yamamoto, T.; Takeoka, S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1219–1227.CrossRefGoogle Scholar
  9. [9]
    Meng, H.; Wang, M. Y.; Liu, H. Y.; Liu, X. S.; Situ, A.; Wu, B.; Ji, Z. X.; Chang, C. H.; Nel, A. E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015, 9, 3540–3557.CrossRefGoogle Scholar
  10. [10]
    Liao, J. W.; Liu, P. P.; Hou, G. X.; Shao, J. J.; Jing, Y.; Liu, K. Y.; Lu, W. H.; Wen, S. J.; Hu, Y. M.; Peng, H. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling. Mol. Cancer. 2017, 16, 51.CrossRefGoogle Scholar
  11. [11]
    Harnoy, A. J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R. J. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J. Am. Chem. Soc. 2014, 136, 7531–7534.CrossRefGoogle Scholar
  12. [12]
    Davaa, E.; Lee, J.; Jenjob, R.; Yang, S. G. Mt1-mmp responsive doxorubicin conjugated poly (lactic-co-glycolic acid)/poly (styrene- alt-maleic anhydride) core/shell microparticles for intrahepatic arterial chemotherapy of hepatic cancer. ACS Appl. Mater. Interfaces 2017, 9, 71–79.CrossRefGoogle Scholar
  13. [13]
    Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.CrossRefGoogle Scholar
  14. [14]
    Mizrahy, S.; Peer, D. Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev. 2012, 41, 2623–2640.CrossRefGoogle Scholar
  15. [15]
    Liang, X. L.; Fang, L.; Li, X. D.; Zhang, X.; Wang, F. Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials 2017, 132, 72–84.CrossRefGoogle Scholar
  16. [16]
    Cai, Y. P.; López-Ruiz, E.; Wengel, J.; Creemers, L. B.; Howard, K. A. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J. Control. Release 2017, 253, 153–159.CrossRefGoogle Scholar
  17. [17]
    Zhou, B.; Weigel, J. A.; Fauss, L.; Weigel, P. H. Identification of the hyaluronan receptor for endocytosis (HARE). J. Biol. Chem. 2000, 275, 37733–37741.CrossRefGoogle Scholar
  18. [18]
    Yang, C. C.; Li, C.; Zhang, P.; Wu, W.; Jiang, X. Q. Redox responsive hyaluronic acid nanogels for treating rhamm (CD168) over-expressive cancer, both primary and metastatic tumors. Theranostics 2017, 7, 1719–1734.CrossRefGoogle Scholar
  19. [19]
    Wickens, J. M.; Alsaab, H. O.; Kesharwani, P.; Bhise, K.; Amin, M. C. I. M.; Tekade, R. K.; Gupta, U.; Iyer, A. K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today 2017, 22, 665–680.CrossRefGoogle Scholar
  20. [20]
    Jeong, J. Y.; Hong, E. H.; Lee, S. Y.; Lee, J. Y.; Song, J. H.; Ko, S. H.; Shim, J. S.; Choe, S.; Kim, D. D.; Ko, H. J. et al. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater. 2017, 53, 414–426.CrossRefGoogle Scholar
  21. [21]
    Zhu, D. Q.; Wang, H. Y.; Trinh, P.; Heilshorn, S. C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials 2017, 127, 132–140.CrossRefGoogle Scholar
  22. [22]
    Noh, I.; Kim, H. O.; Choi, J.; Choi, Y.; Dong, K. L.; Huh, Y. M.; Haam, S. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials 2015, 53, 763–774.CrossRefGoogle Scholar
  23. [23]
    Han, J.; Park, W.; Park, S.; Na, K. Photosensitizer-conjugated hyaluronic acid-shielded polydopamine nanoparticles for targeted photo-mediated tumor therapy. ACS Appl. Mater. Interfaces 2016, 8, 7739–7747.CrossRefGoogle Scholar
  24. [24]
    Deng, C.; Jiang, Y. J.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7, 467–480.CrossRefGoogle Scholar
  25. [25]
    Brugués, A. P.; Naveros, B. C.; Calpena Campmany, A. C.; Pastor, P. H.; Saladrigas, R. F.; Lizandra, C. R. Developing cutaneous applications of paromomycin entrapped in stimuli- sensitive block copolymer nanogel dispersions. Nanomedicine 2015, 10, 227–240.CrossRefGoogle Scholar
  26. [26]
    Tang, L. M.; Zhou, M. L.; Huang, Y.; Zhong, J. J.; Zhou, Z.; Luo, K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer-doxorubicin conjugate-based nanoparticles for cancer therapy. Polymer Chem. 2017, 8, 2370–2380.CrossRefGoogle Scholar
  27. [27]
    Zhou, Z. W.; Li, H. P.; Wang, K. K.; Guo, Q.; Li, C. Z.; Jiang, H. L.; Hu, Y. Q.; Oupicky, D.; Sun, M. J. Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy. ACS Appl. Mater. Interfaces 2017, 9, 14576–14589.CrossRefGoogle Scholar
  28. [28]
    Yang, C. C.; Wang, X.; Yao, X. K.; Zhang, Y. J.; Wu, W.; Jiang, X. Q. Hyaluronic acid nanogels with enzyme-sensitive cross- linking group for drug delivery. J. Control. Release 2015, 205, 206–217.CrossRefGoogle Scholar
  29. [29]
    Guan, X. W.; Li, Y. H.; Jiao, Z. X.; Chen, J.; Guo, Z. P.; Tian, H. Y.; Chen, X. S. A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomater. 2013, 9, 7672–7678.CrossRefGoogle Scholar
  30. [30]
    Wang, D. G.; Wang, T. T.; Liu, J. P.; Yu, H. J.; Shi, J.; Bing, F.; Zhou, F. Y.; Fu, Y. L.; Yin, Q.; Zhang, P. C. et al. Acid-activatable versatile micelleplexes for PD-L1 blockade- enhanced cancer photodynamic immunotherapy. Nano Lett. 2016, 16, 5503–5513.CrossRefGoogle Scholar
  31. [31]
    Liu, J.; Huang, Y. R.; Kumar, A.; Tan, A.; Jin, S. B.; Mozhi, A.; Liang, X. J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014, 32, 693–710.CrossRefGoogle Scholar
  32. [32]
    Ma, J.; Kang, K.; Yi, Q. Y.; Zhang, Z. R.; Gu, Z. W. Multiple pH responsive zwitterionic micelles for stealth delivery of anticancer drugs. RSC Adv. 2016, 6, 64778–64790.CrossRefGoogle Scholar
  33. [33]
    Cong, T. H.; Kang, S. W.; Li, Y.; Kim, B. S.; Lee, D. S. Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter 2011, 7, 8984–8990.CrossRefGoogle Scholar
  34. [34]
    Liu, Y. H.; Sun, J.; Cao, W.; Yang, J. H.; Lian, H.; Li, X.; Sun, Y. H.; Wang, Y. J.; Wang, S. L.; He, Z. G. Dual targeting folate- conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharmaceutics 2011, 421, 160–169.CrossRefGoogle Scholar
  35. [35]
    Hachet, E.; Van Den Berghe, H.; Bayma, E.; Block, M.; Auzély-Velty, R. Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 2012, 13, 1818–1827.CrossRefGoogle Scholar
  36. [36]
    Cui, C.; Xue, Y. N.; Wu, M.; Zhang, Y.; Yu, P.; Liu, L.; Zhuo, R. X.; Huang, S. W. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials 2013, 34, 3858–3869.CrossRefGoogle Scholar
  37. [37]
    Jiang, Y.; Wang, X. Z.; Liu, X.; Lv, W.; Zhang, H. J.; Zhang, M. W.; Li, X. R.; Xin, H. L.; Xu, Q. W. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 211–217.CrossRefGoogle Scholar
  38. [38]
    Cho, E. J.; Sun, B.; Doh, K. O.; Wilson, E. M.; Torregrosa-Allen, S.; Elzey, B. D.; Yeo, Y. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials 2015, 37, 312–319.CrossRefGoogle Scholar
  39. [39]
    Ding, X. F.; Wang, W.; Wang, Y. Z.; Bao, X. L.; Wang, Y.; Wang, C.; Chen, J.; Zhang, F. R.; Zhou, J. P. Versatile reticular polyethylenimine derivative-mediated targeted drug and gene codelivery for tumor therapy. Mol. Pharmaceutics 2014, 11, 3307–3321.CrossRefGoogle Scholar
  40. [40]
    Han, S.; Liu, Y.; Nie, X.; Xu, Q.; Jiao, F.; Li, W.; Zhao, Y.; Wu, Y.; Chen, C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid- co-lactic acid)/DPPE co-polymer nanoparticles. Small 2012, 8, 1596–1606.CrossRefGoogle Scholar
  41. [41]
    Yue, J.; Liu, S.; Wang, R.; Hu, X. L.; Xie, Z. G.; Huang, Y. B.; Jing, X. B. Transferrin-conjugated micelles: Enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol. Pharmaceutics 2012, 9, 1919–1931.CrossRefGoogle Scholar
  42. [42]
    Raemdonck, K.; Martens, T. F.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliver. Rev. 2013, 65, 1123–1147.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Djamila Aouameur
    • 1
  • Hao Cheng
    • 1
  • Yaw Opoku-Damoah
    • 1
  • Bo Sun
    • 2
  • Qiuling Dong
    • 1
  • Yue Han
    • 1
  • Jianping Zhou
    • 1
  • Yang Ding
    • 1
  1. 1.State Key Laboratory of Natural Medicines, Department of PharmaceuticsChina Pharmaceutical UniversityNanjingChina
  2. 2.Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of NanomedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations