Skip to main content
Log in

Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scanning electrochemical microscopy represents a powerful tool for electro(chemical) characterization of surfaces, but its applicability has been limited in most cases at microscale spatial resolution, and the greatest challenge has been the scaling down to the nanoscale for fabrication and the use of nanometer-sized tips. Here, Pt nanoelectrodes with nanometer electroactive area were fabricated and employed for imaging a distribution of gold nanoparticles (AuNPs) and bioelectrocatalytic activity of a redox-active enzyme immobilized on gold surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132–138.

    Google Scholar 

  2. Scanning Electrochemical Microscopy; Mirkin, M. V.; Bard, A. J., Eds.; Marcel Dekker: New York, 2001.

    Google Scholar 

  3. Wittstock, G.; Burchardt, M.; Pust, S. E.; Shen, Y.; Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem., Int. Ed. 2007, 46, 1584–1617.

    Article  Google Scholar 

  4. Takahashi, Y.; Hirano, Y.; Yasukawa, T.; Shiku, H.; Yamada, H.; Matsue, T. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 2006, 22, 10299–10306.

    Article  Google Scholar 

  5. Tan, C.; Rodríguez-López, J.; Parks, J. J.; Ritzert, N. L.; Ralph, D. C.; Abruña, H. D. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano 2012, 6, 3070–3079.

    Article  Google Scholar 

  6. Rodríguez-López, J.; Ritzert, N. L.; Mann, J. A.; Tan, C.; Dichtel, W. R.; Abruña, H. D. Quantification of the surface diffusion of tripodal binding motifs on graphene using scanning electrochemical microscopy. J. Am. Chem. Soc. 2012, 134, 6224–6236.

    Article  Google Scholar 

  7. Roberts, W. S.; Lonsdale, D. J.; Griffiths, J.; Higson, S. P. J. Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 2007, 23, 301–318.

    Article  Google Scholar 

  8. Parra, A.; Casero, E.; Vázquez, L.; Jin, J.; Pariente, F.; Lorenzo, E. Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase. Langmuir 2006, 22, 5443–5450.

    Article  Google Scholar 

  9. Horrocks, B. R.; Wittstock, G. Biotechnological applications. In Scanning Electrochemical Microscopy; Mirkin, M. V.; Bard, A. J., Eds.; CRC Press: Boca Raton, 2012; pp 318–370.

    Google Scholar 

  10. Edwards, M. A.; Martin, S.; Whitworth, A. L.; Macpherson, J. V.; Unwin, P. R. Scanning electrochemical microscopy: Principles and applications to biophysical systems. Physiol. Measure. 2006, 27, R63–R108.

    Article  Google Scholar 

  11. Pierce, D. T.; Unwin, P. R.; Bard, A. J. Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 1992, 64, 1795–1804.

    Google Scholar 

  12. Pellissier, M.; Zigah, D.; Barrière, F.; Hapiot, P. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Langmuir 2008, 24, 9089–9095.

    Article  Google Scholar 

  13. Nogala, W.; Szot, K.; Burchardt, M.; Roelfs, F.; Rogalski, J.; Opallo, M.; Wittstock, G. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film. Analyst 2010, 135, 2051–2058.

    Article  Google Scholar 

  14. Zhao, C.; Wittstock, G. Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as enzyme label. Biosens. Bioelectron. 2005, 20, 1277–1284.

    Article  Google Scholar 

  15. Schäfer, D.; Maciejewska, M.; Schuhmann, W. SECM visualization of spatial variability of enzyme–polymer spots: 1. Discretisation and interference elimination using artificial neural networks. Biosens. Bioelectron. 2007, 22, 1887–1895.

    Google Scholar 

  16. Zhao, C.; Wittstock, G. Scanning electrochemical microscopy of quinoprotein glucose dehydrogenase. Anal. Chem. 2004, 76, 3145–3154.

    Article  Google Scholar 

  17. Wittstock, G.; Schuhmann, W. Formation and imaging of microscopic enzymatically active spots on an alkanethiolatecovered gold electrode by scanning electrochemical microscopy. Anal. Chem. 1997, 69, 5059–5066.

    Article  Google Scholar 

  18. Zhao, C.; Sinha, J. K.; Wijayawardhana, C. A.; Wittstock, G. Monitoring ß-galactosidase activity by means of scanning electrochemical microscopy. J. Electroanal. Chem. 2004, 561, 83–91.

    Article  Google Scholar 

  19. Arrigan, D. W. M. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 2004, 129, 1157–1165.

    Article  Google Scholar 

  20. Katemann, B. B.; Schuhmann, W. Fabrication and characterization of needle-type. Electroanalysis 2002, 14, 22–28.

    Article  Google Scholar 

  21. Shao, Y. H.; Mirkin, M. V.; Fish, G.; Kokotov, S.; Palanker, D.; Lewis, A. Nanometer-sized electrochemical sensors. Anal. Chem. 1997, 69, 1627–1634.

    Article  Google Scholar 

  22. Murray, R. W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720.

    Article  Google Scholar 

  23. Mirkin, M. V.; Fan, F.-R. F.; Bard, A. J. Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. J. Electroanal. Chem. 1992, 328, 47–62.

    Article  Google Scholar 

  24. Melmed, A. J. The art and science and other aspects of making sharp tips. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenom. 1991, 9, 601–608.

    Article  Google Scholar 

  25. Bach, C. E.; Nichols, R. J.; Beckmann, W.; Meyer, H.; Schulte, A.; Besenhard, J. O.; Jannakoudakis, P. D. Effective insulation of scanning tunneling microscopy tips for electrochemical studies using an electropainting method. J. Electrochem. Soc. 1993, 140, 1281–1284.

    Article  Google Scholar 

  26. Slevin, C. J.; Gray, N. J.; Macpherson, J. V.; Webb, M. A.; Unwin, P. R. Fabrication and characterisation of nanometresized platinum electrodes for voltammetric analysis and imaging. Electrochem. Commun. 1999, 1, 282–288.

    Article  Google Scholar 

  27. Zhang, B.; Galusha, J.; Shiozawa, P. G.; Wang, G. L.; Bergren, A. J.; Jones, R. M.; White, R. J.; Ervin, E. N.; Cauley, C. C.; White, H. S. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 2007, 79, 4778–4787.

    Article  Google Scholar 

  28. Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical–atomic force microscopy. Anal. Chem. 2000, 72, 276–285.

    Article  Google Scholar 

  29. Li, Y. X.; Bergman, D.; Zhang, B. Preparation and electrochemical response of 1–3 nm Pt disk electrodes. Anal. Chem. 2009, 81, 5496–5502.

    Article  Google Scholar 

  30. Watkins, J. J.; Chen, J. Y.; White, H. S.; Abruña, H. D.; Maisonhaute, E.; Amatore, C. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions. Anal. Chem. 2003, 75, 3962–3971.

    Article  Google Scholar 

  31. Pendley, B. D.; Abruna, H. D. Construction of submicrometer voltammetric electrodes. Anal. Chem. 1990, 62, 782–784.

    Article  Google Scholar 

  32. Agyekum, I.; Nimley, C.; Yang, C. X.; Sun, P. Combination of scanning electron microscopy in the characterization of a nanometer-sized electrode and current fluctuation observed at a nanometer-sized electrode. J. Phys. Chem. C 2010, 114, 14970–14974.

    Article  Google Scholar 

  33. Baltes, N.; Thouin, L.; Amatore, C.; Heinze, J. Imaging concentration profiles of redox-active species with nanometric amperometric probes: Effect of natural convection on transport at microdisk electrodes. Angew. Chem., Int. Ed. 2004, 43, 1431–1435.

    Article  Google Scholar 

  34. Schulte, A.; Chow, R. H. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. Anal. Chem. 1996, 68, 3054–3058.

    Article  Google Scholar 

  35. Conyers, J. L.; White, H. S. Electrochemical characterization of electrodes with submicrometer dimensions. Anal. Chem. 2000, 72, 4441–4446.

    Article  Google Scholar 

  36. Watkins, J. J.; White, H. S. The role of the electrical double layer and ion pairing on the electrochemical oxidation of hexachloroiridate(III) at Pt electrodes of nanometer dimensions. Langmuir 2004, 20, 5474–5483.

    Article  Google Scholar 

  37. Sun, P.; Zhang, Z. Q.; Guo, J. D.; Shao, Y. H. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy. Anal. Chem. 2001, 73, 5346–5351.

    Article  Google Scholar 

  38. Liu, B.; Rolland, J. P.; DeSimone, J. M.; Bard, A. J. Fabrication of ultramicroelectrodes using a “Teflon-like” coating material. Anal. Chem. 2005, 77, 3013–3017.

    Article  Google Scholar 

  39. Fan, F.-R. F.; Bard, A. J. Electrochemical detection of single molecules. Science 1995, 267, 871–874.

    Google Scholar 

  40. Fan, F.-R. F.; Kwak, J.; Bard, A. J. Single molecule electrochemistry. J. Am. Chem. Soc. 1996, 118, 9669–9675.

    Google Scholar 

  41. Bard, A. J.; Fan, F.-R. F. Electrochemical detection of single molecules. Acc. Chem. Res. 1996, 29, 572–578.

    Article  Google Scholar 

  42. Penner, R. M.; Heben, M. J.; Longin, T. L.; Lewis, N. S. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 1990, 250, 1118–1121.

    Article  Google Scholar 

  43. Hrapovic, S.; Luong, J. H. T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Anal. Chem. 2003, 75, 3308–3315.

    Article  Google Scholar 

  44. Tel-Vered, R.; Bard, A. J. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques. J. Phys. Chem. B 2006, 110, 25279–25287.

    Article  Google Scholar 

  45. Lai, S. C. S.; Dudin, P. V.; Macpherson, J. V.; Unwin, P. R. Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J. Am. Chem. Soc. 2011, 133, 10744–10747.

    Article  Google Scholar 

  46. Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K. C.; Bard, A. J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy.. J. Am. Chem. Soc. 2016, 138, 8560–8568.

    Article  Google Scholar 

  47. Abad, J. M.; Tesio, A. Y.; Pariente, F.; Lorenzo, E. Patterning gold nanoparticle using scanning electrochemical microscopy. J. Phys. Chem. C 2013, 117, 22087–22093

    Article  Google Scholar 

  48. Ferreira, M.; Varela, H.; Torresi, R. M.; Tremiliosi-Filho, G. Electrode passivation caused by polymerization of different phenolic compounds. Electrochim. Acta 2006, 52, 434–442.

    Article  Google Scholar 

  49. Llopis, J. F.; Colom; F. Encyclopedia of electrochemistry of the elements. In Encyclopedia of Electrochemistry of the Elements; Bard, A. J., Ed.; Marcel Dekker: New York, 1976; Vol. 6, pp 224–226.

    Google Scholar 

  50. Haiss, W.; Martín, S.; Leary, E.; van Zalinge, H.; Higgins, S. J.; Bouffier, L.; Nichols, R. J. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 2009, 113, 5823–5833.

    Article  Google Scholar 

  51. Brust, M.; Bethell, D.; Kiely, C. J.; Schiffrin, D. J. Selfassembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 1998, 14, 5425–5429.

    Article  Google Scholar 

  52. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

    Article  Google Scholar 

  53. Aizenberg, J.; Black, A. J.; Whitesides, G. M. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature 1998, 394, 868–871.

    Article  Google Scholar 

  54. Madoz-Gúrpide, J.; Abad, J. M.; Fernández-Recio, J.; Vélez, M.; Vázquez, L.; Gómez-Moreno, C.; Fernández, V. M. Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin:NADP+reductase onto modified gold electrodes. J. Am. Chem. Soc. 2000, 122, 9808–9817.

    Article  Google Scholar 

  55. Darder, M.; Takada, K.; Pariente, F.; Lorenzo, E.; Abruña, H. D. Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor. Anal. Chem. 1999, 71, 5530–5537.

    Article  Google Scholar 

  56. Leiros, I.; Wang, E.; Rasmussen, T.; Oksanen, E.; Repo, H.; Petersen, S. B.; Heikinheimo, P.; Hough, E. The 2.1 Å structure of Aerococcus viridans l-lactate oxidase (LOX). Acta Cryst. 2006, 62, 1185–1190.

    Google Scholar 

  57. Parra, A.; Casero, E.; Vázquez, L.; Pariente, F.; Lorenzo, E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 2006, 555, 308–315.

    Article  Google Scholar 

Download references

Acknowledgements

J. M. A. acknowledges research funding by a “Ramon y Cajal” contract from the Spanish Ministry of Science and Innovation. A. Y. T. acknowledges a fellowship from CONICET and Fundación Carolina. We are grateful to Prof. Luis Vázquez and Tech. Andrés Valera (ICMM-CSIC) for carrying out AFM and SEM measurements, respectively. The authors also thank Dr. Elena Casero (UAM) for support in the use of SECM instrumentation and Prof. H. D. Abruña for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvaro Y. Tesio or Encarnación Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abad, J.M., Tesio, A.Y., Martínez-Periñán, E. et al. Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy. Nano Res. 11, 4232–4244 (2018). https://doi.org/10.1007/s12274-018-2011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2011-2

Keywords

Navigation