Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy

  • José M. Abad
  • Alvaro Y. Tesio
  • Emiliano Martínez-Periñán
  • Félix Pariente
  • Encarnación Lorenzo
Research Article


Scanning electrochemical microscopy represents a powerful tool for electro(chemical) characterization of surfaces, but its applicability has been limited in most cases at microscale spatial resolution, and the greatest challenge has been the scaling down to the nanoscale for fabrication and the use of nanometer-sized tips. Here, Pt nanoelectrodes with nanometer electroactive area were fabricated and employed for imaging a distribution of gold nanoparticles (AuNPs) and bioelectrocatalytic activity of a redox-active enzyme immobilized on gold surfaces.


scanning electrochemical microscopy gold nanoparticle redox enzyme nanoelectrode lactate oxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



J. M. A. acknowledges research funding by a “Ramon y Cajal” contract from the Spanish Ministry of Science and Innovation. A. Y. T. acknowledges a fellowship from CONICET and Fundación Carolina. We are grateful to Prof. Luis Vázquez and Tech. Andrés Valera (ICMM-CSIC) for carrying out AFM and SEM measurements, respectively. The authors also thank Dr. Elena Casero (UAM) for support in the use of SECM instrumentation and Prof. H. D. Abruña for critically reviewing this manuscript.


  1. [1]
    Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132–138.CrossRefGoogle Scholar
  2. [2]
    Scanning Electrochemical Microscopy; Mirkin, M. V.; Bard, A. J., Eds.; Marcel Dekker: New York, 2001.Google Scholar
  3. [3]
    Wittstock, G.; Burchardt, M.; Pust, S. E.; Shen, Y.; Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem., Int. Ed. 2007, 46, 1584–1617.CrossRefGoogle Scholar
  4. [4]
    Takahashi, Y.; Hirano, Y.; Yasukawa, T.; Shiku, H.; Yamada, H.; Matsue, T. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 2006, 22, 10299–10306.CrossRefGoogle Scholar
  5. [5]
    Tan, C.; Rodríguez-López, J.; Parks, J. J.; Ritzert, N. L.; Ralph, D. C.; Abruña, H. D. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano 2012, 6, 3070–3079.CrossRefGoogle Scholar
  6. [6]
    Rodríguez-López, J.; Ritzert, N. L.; Mann, J. A.; Tan, C.; Dichtel, W. R.; Abruña, H. D. Quantification of the surface diffusion of tripodal binding motifs on graphene using scanning electrochemical microscopy. J. Am. Chem. Soc. 2012, 134, 6224–6236.CrossRefGoogle Scholar
  7. [7]
    Roberts, W. S.; Lonsdale, D. J.; Griffiths, J.; Higson, S. P. J. Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens. Bioelectron. 2007, 23, 301–318.CrossRefGoogle Scholar
  8. [8]
    Parra, A.; Casero, E.; Vázquez, L.; Jin, J.; Pariente, F.; Lorenzo, E. Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase. Langmuir 2006, 22, 5443–5450.CrossRefGoogle Scholar
  9. [9]
    Horrocks, B. R.; Wittstock, G. Biotechnological applications. In Scanning Electrochemical Microscopy; Mirkin, M. V.; Bard, A. J., Eds.; CRC Press: Boca Raton, 2012; pp 318–370.Google Scholar
  10. [10]
    Edwards, M. A.; Martin, S.; Whitworth, A. L.; Macpherson, J. V.; Unwin, P. R. Scanning electrochemical microscopy: Principles and applications to biophysical systems. Physiol. Measure. 2006, 27, R63–R108.CrossRefGoogle Scholar
  11. [11]
    Pierce, D. T.; Unwin, P. R.; Bard, A. J. Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 1992, 64, 1795–1804.Google Scholar
  12. [12]
    Pellissier, M.; Zigah, D.; Barrière, F.; Hapiot, P. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Langmuir 2008, 24, 9089–9095.CrossRefGoogle Scholar
  13. [13]
    Nogala, W.; Szot, K.; Burchardt, M.; Roelfs, F.; Rogalski, J.; Opallo, M.; Wittstock, G. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film. Analyst 2010, 135, 2051–2058.CrossRefGoogle Scholar
  14. [14]
    Zhao, C.; Wittstock, G. Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as enzyme label. Biosens. Bioelectron. 2005, 20, 1277–1284.CrossRefGoogle Scholar
  15. [15]
    Schäfer, D.; Maciejewska, M.; Schuhmann, W. SECM visualization of spatial variability of enzyme–polymer spots: 1. Discretisation and interference elimination using artificial neural networks. Biosens. Bioelectron. 2007, 22, 1887–1895.Google Scholar
  16. [16]
    Zhao, C.; Wittstock, G. Scanning electrochemical microscopy of quinoprotein glucose dehydrogenase. Anal. Chem. 2004, 76, 3145–3154.CrossRefGoogle Scholar
  17. [17]
    Wittstock, G.; Schuhmann, W. Formation and imaging of microscopic enzymatically active spots on an alkanethiolatecovered gold electrode by scanning electrochemical microscopy. Anal. Chem. 1997, 69, 5059–5066.CrossRefGoogle Scholar
  18. [18]
    Zhao, C.; Sinha, J. K.; Wijayawardhana, C. A.; Wittstock, G. Monitoring ß-galactosidase activity by means of scanning electrochemical microscopy. J. Electroanal. Chem. 2004, 561, 83–91.CrossRefGoogle Scholar
  19. [19]
    Arrigan, D. W. M. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 2004, 129, 1157–1165.CrossRefGoogle Scholar
  20. [20]
    Katemann, B. B.; Schuhmann, W. Fabrication and characterization of needle-type. Electroanalysis 2002, 14, 22–28.CrossRefGoogle Scholar
  21. [21]
    Shao, Y. H.; Mirkin, M. V.; Fish, G.; Kokotov, S.; Palanker, D.; Lewis, A. Nanometer-sized electrochemical sensors. Anal. Chem. 1997, 69, 1627–1634.CrossRefGoogle Scholar
  22. [22]
    Murray, R. W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720.CrossRefGoogle Scholar
  23. [23]
    Mirkin, M. V.; Fan, F.-R. F.; Bard, A. J. Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. J. Electroanal. Chem. 1992, 328, 47–62.CrossRefGoogle Scholar
  24. [24]
    Melmed, A. J. The art and science and other aspects of making sharp tips. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenom. 1991, 9, 601–608.CrossRefGoogle Scholar
  25. [25]
    Bach, C. E.; Nichols, R. J.; Beckmann, W.; Meyer, H.; Schulte, A.; Besenhard, J. O.; Jannakoudakis, P. D. Effective insulation of scanning tunneling microscopy tips for electrochemical studies using an electropainting method. J. Electrochem. Soc. 1993, 140, 1281–1284.CrossRefGoogle Scholar
  26. [26]
    Slevin, C. J.; Gray, N. J.; Macpherson, J. V.; Webb, M. A.; Unwin, P. R. Fabrication and characterisation of nanometresized platinum electrodes for voltammetric analysis and imaging. Electrochem. Commun. 1999, 1, 282–288.CrossRefGoogle Scholar
  27. [27]
    Zhang, B.; Galusha, J.; Shiozawa, P. G.; Wang, G. L.; Bergren, A. J.; Jones, R. M.; White, R. J.; Ervin, E. N.; Cauley, C. C.; White, H. S. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 2007, 79, 4778–4787.CrossRefGoogle Scholar
  28. [28]
    Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical–atomic force microscopy. Anal. Chem. 2000, 72, 276–285.CrossRefGoogle Scholar
  29. [29]
    Li, Y. X.; Bergman, D.; Zhang, B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes. Anal. Chem. 2009, 81, 5496–5502.CrossRefGoogle Scholar
  30. [30]
    Watkins, J. J.; Chen, J. Y.; White, H. S.; Abruña, H. D.; Maisonhaute, E.; Amatore, C. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions. Anal. Chem. 2003, 75, 3962–3971.CrossRefGoogle Scholar
  31. [31]
    Pendley, B. D.; Abruna, H. D. Construction of submicrometer voltammetric electrodes. Anal. Chem. 1990, 62, 782–784.CrossRefGoogle Scholar
  32. [32]
    Agyekum, I.; Nimley, C.; Yang, C. X.; Sun, P. Combination of scanning electron microscopy in the characterization of a nanometer-sized electrode and current fluctuation observed at a nanometer-sized electrode. J. Phys. Chem. C 2010, 114, 14970–14974.CrossRefGoogle Scholar
  33. [33]
    Baltes, N.; Thouin, L.; Amatore, C.; Heinze, J. Imaging concentration profiles of redox-active species with nanometric amperometric probes: Effect of natural convection on transport at microdisk electrodes. Angew. Chem., Int. Ed. 2004, 43, 1431–1435.CrossRefGoogle Scholar
  34. [34]
    Schulte, A.; Chow, R. H. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. Anal. Chem. 1996, 68, 3054–3058.CrossRefGoogle Scholar
  35. [35]
    Conyers, J. L.; White, H. S. Electrochemical characterization of electrodes with submicrometer dimensions. Anal. Chem. 2000, 72, 4441–4446.CrossRefGoogle Scholar
  36. [36]
    Watkins, J. J.; White, H. S. The role of the electrical double layer and ion pairing on the electrochemical oxidation of hexachloroiridate(III) at Pt electrodes of nanometer dimensions. Langmuir 2004, 20, 5474–5483.CrossRefGoogle Scholar
  37. [37]
    Sun, P.; Zhang, Z. Q.; Guo, J. D.; Shao, Y. H. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy. Anal. Chem. 2001, 73, 5346–5351.CrossRefGoogle Scholar
  38. [38]
    Liu, B.; Rolland, J. P.; DeSimone, J. M.; Bard, A. J. Fabrication of ultramicroelectrodes using a “Teflon-like” coating material. Anal. Chem. 2005, 77, 3013–3017.CrossRefGoogle Scholar
  39. [39]
    Fan, F.-R. F.; Bard, A. J. Electrochemical detection of single molecules. Science 1995, 267, 871–874.Google Scholar
  40. [40]
    Fan, F.-R. F.; Kwak, J.; Bard, A. J. Single molecule electrochemistry. J. Am. Chem. Soc. 1996, 118, 9669–9675.Google Scholar
  41. [41]
    Bard, A. J.; Fan, F.-R. F. Electrochemical detection of single molecules. Acc. Chem. Res. 1996, 29, 572–578.CrossRefGoogle Scholar
  42. [42]
    Penner, R. M.; Heben, M. J.; Longin, T. L.; Lewis, N. S. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 1990, 250, 1118–1121.CrossRefGoogle Scholar
  43. [43]
    Hrapovic, S.; Luong, J. H. T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Anal. Chem. 2003, 75, 3308–3315.CrossRefGoogle Scholar
  44. [44]
    Tel-Vered, R.; Bard, A. J. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques. J. Phys. Chem. B 2006, 110, 25279–25287.CrossRefGoogle Scholar
  45. [45]
    Lai, S. C. S.; Dudin, P. V.; Macpherson, J. V.; Unwin, P. R. Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J. Am. Chem. Soc. 2011, 133, 10744–10747.CrossRefGoogle Scholar
  46. [46]
    Kim, J.; Renault, C.; Nioradze, N.; Arroyo-Currás, N.; Leonard, K. C.; Bard, A. J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy.. J. Am. Chem. Soc. 2016, 138, 8560–8568.CrossRefGoogle Scholar
  47. [47]
    Abad, J. M.; Tesio, A. Y.; Pariente, F.; Lorenzo, E. Patterning gold nanoparticle using scanning electrochemical microscopy. J. Phys. Chem. C 2013, 117, 22087–22093CrossRefGoogle Scholar
  48. [48]
    Ferreira, M.; Varela, H.; Torresi, R. M.; Tremiliosi-Filho, G. Electrode passivation caused by polymerization of different phenolic compounds. Electrochim. Acta 2006, 52, 434–442.CrossRefGoogle Scholar
  49. [49]
    Llopis, J. F.; Colom; F. Encyclopedia of electrochemistry of the elements. In Encyclopedia of Electrochemistry of the Elements; Bard, A. J., Ed.; Marcel Dekker: New York, 1976; Vol. 6, pp 224–226.Google Scholar
  50. [50]
    Haiss, W.; Martín, S.; Leary, E.; van Zalinge, H.; Higgins, S. J.; Bouffier, L.; Nichols, R. J. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 2009, 113, 5823–5833.CrossRefGoogle Scholar
  51. [51]
    Brust, M.; Bethell, D.; Kiely, C. J.; Schiffrin, D. J. Selfassembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 1998, 14, 5425–5429.CrossRefGoogle Scholar
  52. [52]
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.CrossRefGoogle Scholar
  53. [53]
    Aizenberg, J.; Black, A. J.; Whitesides, G. M. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature 1998, 394, 868–871.CrossRefGoogle Scholar
  54. [54]
    Madoz-Gúrpide, J.; Abad, J. M.; Fernández-Recio, J.; Vélez, M.; Vázquez, L.; Gómez-Moreno, C.; Fernández, V. M. Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin:NADP+reductase onto modified gold electrodes. J. Am. Chem. Soc. 2000, 122, 9808–9817.CrossRefGoogle Scholar
  55. [55]
    Darder, M.; Takada, K.; Pariente, F.; Lorenzo, E.; Abruña, H. D. Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor. Anal. Chem. 1999, 71, 5530–5537.CrossRefGoogle Scholar
  56. [56]
    Leiros, I.; Wang, E.; Rasmussen, T.; Oksanen, E.; Repo, H.; Petersen, S. B.; Heikinheimo, P.; Hough, E. The 2.1 Å structure of Aerococcus viridans l-lactate oxidase (LOX). Acta Cryst. 2006, 62, 1185–1190.Google Scholar
  57. [57]
    Parra, A.; Casero, E.; Vázquez, L.; Pariente, F.; Lorenzo, E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 2006, 555, 308–315.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José M. Abad
    • 1
  • Alvaro Y. Tesio
    • 2
  • Emiliano Martínez-Periñán
    • 1
  • Félix Pariente
    • 1
  • Encarnación Lorenzo
    • 1
    • 3
  1. 1.Departamento de Química Analítica y Análisis InstrumentalUniversidad Autónoma de MadridMadridSpain
  2. 2.Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General SavioPalpalá, JujuyArgentina
  3. 3.Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus UAMMadridSpain

Personalised recommendations