Electrochemical behaviors of hierarchical copper nanodendrites in alkaline media

Research Article


In this study, hierarchical copper nano-dendrites (CuNDs) are fabricated via the electrodeposition method. The electrochemical behaviors of the as-obtained hierarchical CuNDs in 0.1 M NaOH aqueous solution are subsequently studied. The CuNDs experience a non-equilibrium oxidation process when subjected to cyclic voltammetry (CV) measurements. The first oxidation peak O1 in CV is attributed to the formation of an epitaxial Cu2O layer over the surface of the hierarchical CuNDs. However, the second oxidation peak O2 in CV appears unusually broad across a wide potential range. In this region, the reaction process starts with the nucleation and growth of Cu(OH)2 nanoneedles, followed by the oxidation of Cu2O. Upon the increase of potential, Cu2O is gradually transformed to CuO and Cu(OH)2, forming a dual-layer structure with high productivity of Cu(OH)2 nanoneedles.


copper nano-dendrites (CuNDs) non-equilibrium oxidation Cu(OH)2 nanoneedles alkaline aqueous solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was support by Tier 1 (AcRF grant MOE Singapore M401992), Tier 2 (AcRF grant MOE Singapore M4020159), the National Natural Science Foundation of China (Nos. 51271031 and 51771027) and the National Basic Research Program of China (No. 2014CB643300).


  1. [1]
    Du, J. L.; Chen, Z. F.; Ye, S. R.; Wiley, B. J.; Meyer, T. J. Copper as a robust and transparent electrocatalyst for water oxidatio. Angew. Chem., Int. Ed. 2015, 54, 2073–2078.CrossRefGoogle Scholar
  2. [2]
    Chen, Z. F.; Meyer, T. J. Copper(II) catalysis of water oxidation. Angew. Chem. 2013, 125, 728–731.CrossRefGoogle Scholar
  3. [3]
    Coggins, M. T. Zhang, M. T.; Chen, Z. F.; Song, N.; Meyer, T. J. Single-site copper(II) water oxidation electrocatalysis: Rate enhancements with HPO4 2−as a proton acceptor at pH 8. Angew. Chem., Int. Ed. 2014, 53, 12226–12230.CrossRefGoogle Scholar
  4. [4]
    Liu, X. M.; Sui, Y. M.; Yang, X. Y.; Wei, Y. J.; Zou, B. Cu nanowires with clean surfaces: Synthesis and enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 26886–26894.CrossRefGoogle Scholar
  5. [5]
    Periasamy, A. P.; Liu, J. F.; Lin, H.-M.; Chang, H.-T. Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol. J. Mater. Chem. A 2013, 1, 5973–5981.CrossRefGoogle Scholar
  6. [6]
    Heli, H.; Jafarian, M.; Mahjani, M.; Gobal, F. Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 2004, 49, 4999–5006.CrossRefGoogle Scholar
  7. [7]
    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRefGoogle Scholar
  8. [8]
    Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.CrossRefGoogle Scholar
  9. [9]
    Xia, L.-P.; Guo, P.; Wang, Y.; Ding, S. Q.; He, J.-B. Multilaminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes. J. Power Sources 2014, 262, 232–238.CrossRefGoogle Scholar
  10. [10]
    Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.CrossRefGoogle Scholar
  11. [11]
    Jia, X. F.; Yang, X.; Li, J.; Li, D. Y.; Wang, E. K. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239.CrossRefGoogle Scholar
  12. [12]
    Wu, J. S.; Li, X. G.; Yadian, B.; Liu, H.; Chun, S.; Zhang, B. W.; Zhou, K.; Gan, C. L.; Huang, Y. Z. Nano-scale oxidation of copper in aqueous solution. Electrochem. Commun. 2013, 26, 21–24.CrossRefGoogle Scholar
  13. [13]
    Zhang, B. W.; Chen, B. S.; Wu, J. S.; Hao, S. J.; Yang, G.; Cao, X.; Jing, L.; Zhu, M. M.; Tsang, S. H.; Teo, E. H. T. et al. The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution. Small 2017, 13, 1603411.CrossRefGoogle Scholar
  14. [14]
    Zhang, B. W.; Hao, S. J.; Wu, J. S.; Li, X. G.; Huang, Y. Z. Evidence of a nanosized copper anodic reaction in an anaerobic sulfide aqueous solution. RSC Adv. 2016, 6, 19937–19943.CrossRefGoogle Scholar
  15. [15]
    Cheng, N. Y.; Xue, Y. R.; Liu, Q.; Tian, J. Q.; Zhang, L. X.; Asiri, A. M.; Sun, X. P. Cu/(Cu(OH)2-CuO) core/shell nanorods array: In-situ growth and application as an efficient 3D oxygen evolution anode. Electrochim. Acta 2015, 163, 102–106.CrossRefGoogle Scholar
  16. [16]
    Zhang, S.; Ma, Y. Y.; Zhang, H.; Zhou, X. M.; Chen, X.; Qu, Y. Q. Additive-free, robust H2 production from H2O and DMF by dehydrogenation catalyzed by Cu/Cu2O formed in situ. Angew. Chem., Int. Ed. 2017, 56, 8245–8249.CrossRefGoogle Scholar
  17. [17]
    Huan, T. N.; Simon, P.; Benayad, A.; Guetaz, L.; Artero, V.; Fontecave, M. Cu/Cu2O electrodes and CO2 reduction to formic acid: Effects of organic additives on surface morphology and activity. Chem.—Eur. J. 2016, 22, 14029–14035.CrossRefGoogle Scholar
  18. [18]
    de Brito, J. F.; da Silva, A. A.; Cavalheiro, A. J.; Zanoni, M. V. B. Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu/Cu2O electrode. Int. J. Electrochem. Sci. 2014, 9, 5961–5973.Google Scholar
  19. [19]
    Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core–shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763–2776.CrossRefGoogle Scholar
  20. [20]
    Dubale, A. A.; Pan, C.-J.; Tamirat, A. G.; Chen, H.-M.; Su, W.-N.; Chen, C.-H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J.-F. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499.CrossRefGoogle Scholar
  21. [21]
    Xu, H.; Feng, J.-X.; Tong, Y.-X.; Li, G. R. Cu2O–Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Catal. 2017, 7, 986–991.CrossRefGoogle Scholar
  22. [22]
    Huan, T. N.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X. Z.; Menguy, N.; Mougel, V.; Fontecave, M. A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2017, 129, 4870–4874.CrossRefGoogle Scholar
  23. [23]
    Shin, H.-C.; Liu, M. L. Copper foam structures with highly porous nanostructured walls. Chem. Mater. 2004, 16, 5460–5464.CrossRefGoogle Scholar
  24. [24]
    Wu, X. F.; Bai, H.; Zhang, J. X.; Chen, F. E.; Shi, G. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 2005, 109, 22836–22842.CrossRefGoogle Scholar
  25. [25]
    Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Singlecrystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.CrossRefGoogle Scholar
  26. [26]
    La, D.-D.; Park, S.-Y.; Choi, Y.-W.; Kim, Y.-S. Wire-like bundle arrays of copper hydroxide prepared by the electrochemical anodization of Cu foil. Bull. Korean Chem. Soc. 2010, 31, 2283–2288.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Interdisciplinary Graduate SchoolNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations