Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording

  • Yichuan Guo
  • Zhiqiang Fang
  • Mingde Du
  • Long Yang
  • Leihou Shao
  • Xiaorui Zhang
  • Li Li
  • Jidong Shi
  • Jinsong Tao
  • Jinfen Wang
  • Hongbian Li
  • Ying Fang
Research Article


Advances in neural electrode technologies can have a significant impact on both fundamental and applied neuroscience. Here, we report the development of flexible and biocompatible neural electrode arrays based on a nanopaper substrate. Nanopaper has important advantages with respect to polymers such as hydrophilicity and water wettability, which result in significantly enhanced biocompatibility, as confirmed by both in vitro viability assays and in vivo histological analysis. In addition, nanopaper exhibits high flexibility and good shape stability. Hence, nanopaper-based neural electrode arrays can conform to the convoluted cortical surface of a rat brain and allow stable multisite recording of epileptiform activity in vivo. Our results show that nanopaper-based electrode arrays represent promising candidates for the flexible and biocompatible recording of the neural activity.


nanopaper neural electrode biocompatibility flexible epilepsy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Qingfei Liu from School of Pharmaceutical Sciences in Tsinghua University for his kind help in cellulose homogenization. We thank Yuchen Lin for his help in AFM analysis. Y. F. thanks the support from the National Natural Science Foundation of China (Nos. 21673057 and 31600868) and Beijing Science and Technology Program (No. Z161100002116010). H. B. L. thanks from the support from BOE Technology Group Co., Ltd. under the project of nanopaper-based multifunctional flexible sensors and the National Key R&D Program of China (No. 2017YFF0209901).

Supplementary material

12274_2018_2005_MOESM1_ESM.pdf (1.6 mb)
Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording


  1. [1]
    Perlmutter, J. S.; Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229–257.CrossRefGoogle Scholar
  2. [2]
    Kipke, D. R.; Vetter, R. J.; Williams, J. C.; Hetke, J. F. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 151–155.CrossRefGoogle Scholar
  3. [3]
    Rousche, P. J.; Normann, R. A. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 1998, 82, 1–15.CrossRefGoogle Scholar
  4. [4]
    Polikov, V. S.; Tresco, P. A.; Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18.CrossRefGoogle Scholar
  5. [5]
    Ward, M. P.; Rajdev, P.; Ellison, C.; Irazoqui, P. P. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 2009, 1282, 183–200.CrossRefGoogle Scholar
  6. [6]
    Wolpaw, J. R.; McFarland, D. J. Control of a two-dimensionalmovement signal by a noninvasive brain-computer interface in humans. Proc. Nati. Acad. Sci. USA 2004, 101, 17849–17854.CrossRefGoogle Scholar
  7. [7]
    Buzsáki, G.; Anastassiou, C. A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420.CrossRefGoogle Scholar
  8. [8]
    Osorio, I.; Frei, M. G.; Giftakis, J.; Peters, T.; Ingram, J.; Turnbull, M.; Herzog, M.; Rise, M. T.; Schaffner, S.; Wennberg, R. A. et al. Performance reassessment of a real-time seizure-detection algorithm on long ECoG series. Epilepsia 2002, 43, 1522–1535.CrossRefGoogle Scholar
  9. [9]
    Leuthardt, E. C.; Schalk, G.; Wolpaw, J. R.; Ojemann, J. G.; Moran, D. W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 2004, 1, 63–71.CrossRefGoogle Scholar
  10. [10]
    Yang, L.; Zhao, Y.; Xu, W. J.; Shi, E. Z.; Wei, W. J.; Li, X. M.; Cao, A. Y.; Cao, Y. P.; Fang, Y. Highly crumpled all-carbon transistors for brain activity recording. Nano. Lett. 2017, 17, 71–77.CrossRefGoogle Scholar
  11. [11]
    Kotov, N. A.; Winter, J. O.; Clements, I. P.; Jan, E.; Timko, B. P.; Campidelli, S.; Pathak, S.; Mazzatenta, A.; Lieber, C. M.; Prato, M. et al. Nanomaterials for neural interfaces. Adv. Mater. 2009, 21, 3970–4004.CrossRefGoogle Scholar
  12. [12]
    Thongpang, S.; Richner, T. J.; Brodnick, S. K.; Schendel, A.; Kim, J.; Wilson, J. A.; Hippensteel, J.; Krugner-Higby, L.; Moran, D.; Ahmed, A. S. et al. A microelectrocorticography platform and deployment strategies for chronic BCI applications. Clin. EEG Neursci. 2011, 42, 259–265.CrossRefGoogle Scholar
  13. [13]
    Khodagholy, D.; Doublet, T.; Gurfinkel, M.; Quilichini, P.; Ismailova, E.; Leleux, P.; Herve, T.; Sanaur, S.; Bernard, C.; Malliaras, G. G. Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater. 2011, 23, H268–H272.CrossRefGoogle Scholar
  14. [14]
    Kunori, N.; Takashima, I. A transparent epidural electrode array for use in conjunction with optical imaging. J. Neurosci. Methods 2015, 251, 130–137.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y. Z.; Wang, Y.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage. Chem. Soc. Rev. 2015, 44, 5181–5199.CrossRefGoogle Scholar
  16. [16]
    Weng, M. C.; Zhou, P. D.; Chen, L. Z.; Zhang, L. L.; Zhang, W.; Huang, Z. G.; Liu, C. H.; Fan, S. S. Multiresponsive bidirectional bending actuators fabricated by a pencil-onpaper method. Adv. Funct. Mater. 2016, 26, 7244–7253.CrossRefGoogle Scholar
  17. [17]
    Barr, M. C.; Rowehl, J. A.; Lunt, R. R.; Xu, J. J.; Wang, A. N.; Boyce, C. M.; Im, S. G.; Bulović, V.; Gleason, K. K. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 2011, 23, 3500–3505.CrossRefGoogle Scholar
  18. [18]
    Siegel, A. C.; Phillips, S. T.; Wiley, B. J.; Whitesides, G. M. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009, 9, 2775–2781.CrossRefGoogle Scholar
  19. [19]
    Martins, R.; Nathan, A.; Barros, R.; Pereira, L.; Barquinha, P.; Correia, N.; Costa, R.; Ahnood, A.; Ferreira, I.; Fortunato, E. Complementary metal oxide semiconductor technology with and on paper. Adv. Mater. 2011, 23, 4491–4496.CrossRefGoogle Scholar
  20. [20]
    Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned paper as a platform for inexpensive, lowvolume, portable bioassays. Angew. Chem., Int. Ed. 2007, 46, 1318–1320.CrossRefGoogle Scholar
  21. [21]
    Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-based electrical respiration sensor. Angew. Chem., Int. Ed. 2016, 55, 5727–5732.CrossRefGoogle Scholar
  22. [22]
    Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961.CrossRefGoogle Scholar
  23. [23]
    Zhu, H. L.; Narakathu, B. B.; Fang, Z. Q.; Aijazi, A. T.; Joyce, M.; Atashbar, M.; Hu, L. B. A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 2014, 6, 9110–9115.CrossRefGoogle Scholar
  24. [24]
    Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.CrossRefGoogle Scholar
  25. [25]
    Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.CrossRefGoogle Scholar
  26. [26]
    Kang, W. B.; Lin, M. F.; Chen, J. W.; Lee, P. S. Highly transparent conducting nanopaper for solid state foldable electrochromic devices. Small 2016, 12, 6370–6377.CrossRefGoogle Scholar
  27. [27]
    Zhang, Q.; Bao, W. Z.; Gong, A.; Gong, T.; Ma, D. K.; Wan, J. Y.; Dai, J. Q.; Munday, J. N.; He, J. H.; Hu, L. B. et al. A highly sensitive, highly transparent, gel-gated MoS2 phototransistor on biodegradable nanopaper. Nanoscale 2016, 8, 14237–14242.CrossRefGoogle Scholar
  28. [28]
    Huang, J.; Zhu, H. L.; Chen, Y. C.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. B. Highly transparent and flexible nanopaper transistors. ACS Nano 2013, 7, 2106–2113.CrossRefGoogle Scholar
  29. [29]
    Zhu, H. L.; Xiao, Z. G.; Liu, D. T.; Li, Y. Y.; Weadock, N. J.; Fang, Z. Q.; Huang, J. S.; Hu, L. B. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 2013, 6, 2105–2111.CrossRefGoogle Scholar
  30. [30]
    Nogi, M.; Komoda, N.; Otsuka, K.; Suganuma, K. Foldable nanopaper antennas for origami electronics. Nanoscale 2013, 5, 4395–4399.CrossRefGoogle Scholar
  31. [31]
    Zhu, H. L.; Fang, Z. Q.; Wang, Z.; Dai, J. Q.; Yao, Y. G.; Shen, F.; Preston, C.; Wu, W. X.; Peng, P.; Jang, N. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 2016, 10, 1369–1377.CrossRefGoogle Scholar
  32. [32]
    Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.CrossRefGoogle Scholar
  33. [33]
    de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 1995, 269, 89–98.CrossRefGoogle Scholar
  34. [34]
    Toivonen, M. S.; Kaskela, A.; Rojas, O. J.; Kauppinen, E. I.; Ikkala, O. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv. Funct. Mater. 2015, 25, 6618–6626.CrossRefGoogle Scholar
  35. [35]
    Daniele, M. A.; Knight, A. J.; Roberts, S. A.; Radom, K.; Erickson, J. S. Sweet substrate: A polysaccharide nanocomposite for conformal electronic decals. Adv. Mater. 2015, 27, 1600–1606.CrossRefGoogle Scholar
  36. [36]
    Lacour, S. P.; Wagner, S.; Huang, Z. Y.; Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 2003, 82, 2404–2406.CrossRefGoogle Scholar
  37. [37]
    Müller, F. A.; Müller, L.; Hofmann, I.; Greil, P.; Wenzel, M. M.; Staudenmaier, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 2006, 27, 3955–3963.CrossRefGoogle Scholar
  38. [38]
    Fundueanu, G.; Constantin, M.; Esposito, E.; Cortesi, R.; Nastruzzi, C.; Menegatti, E. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials 2005, 26, 4337–4347.CrossRefGoogle Scholar
  39. [39]
    Cullen, B.; Watt, P. W.; Lundqvist, C.; Silcock, D.; Schmidt, R. J.; Bogan, D.; Light, N. D. The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int. J. Biochem. Cell Biol. 2002, 34, 1544–1556.CrossRefGoogle Scholar
  40. [40]
    Xing, Q.; Zhao, F.; Chen, S.; McNamara, J.; DeCoster, M. A.; Lvov, Y. M. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. 2010, 6, 2132–2139.CrossRefGoogle Scholar
  41. [41]
    Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629–636.CrossRefGoogle Scholar
  42. [42]
    Penfield, W.; Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain; Little Brown & Co.: Boston, 1954.Google Scholar
  43. [43]
    Canan, S.; Ankarali, S.; Marangoz, C. Detailed spectral profile analysis of penicillin-induced epileptiform activity in anesthetized rats. Epilepsy Res. 2008, 82, 7–14.CrossRefGoogle Scholar
  44. [44]
    Abidin, I.; Yildirim, M.; Aydin-Abidin, S.; Kalay, E.; Cansu, A.; Akca, M.; Mittmann, T. Penicillin induced epileptiform activity and EEG spectrum analysis of BDNF heterozygous mice: An in vivo electrophysiological study. Brain Res. Bull. 2011, 86, 159–164.CrossRefGoogle Scholar
  45. [45]
    Pinto, D. J.; Patrick, S. L.; Huang, W. C.; Connors, B. W. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J. Neurosci. 2005, 25, 8131–8140.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yichuan Guo
    • 1
    • 2
  • Zhiqiang Fang
    • 3
  • Mingde Du
    • 1
    • 2
  • Long Yang
    • 4
  • Leihou Shao
    • 1
    • 2
  • Xiaorui Zhang
    • 1
    • 2
  • Li Li
    • 1
    • 2
  • Jidong Shi
    • 1
    • 2
  • Jinsong Tao
    • 3
  • Jinfen Wang
    • 1
    • 2
  • Hongbian Li
    • 1
    • 2
  • Ying Fang
    • 1
    • 2
    • 5
  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  4. 4.Department of Neurobiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  5. 5.CAS Center for Excellence in Brain Science and Intelligence TechnologyShanghaiChina

Personalised recommendations